首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

2.
Hepatocytes isolated from the livers of fed rats were used for a comparative study of the effects of phenylephrine, vasopressin and glucagon on gluconeogenesis and on enzymes of glycogen metabolism. When hepatocytes were incubated in the presence of Ca2+, phenylephrine stimulated gluconeogenesis from pyruvate less than did glucagon, but, in contrast with this hormone, it did not affect the activities of protein kinase and pyruvate kinase, nor the concentration of phosphoenolpyruvate, and it did not decrease the release of 3H2O from [6-3H]glucose. The effects of vasopressin were similar to those of phenylephrine. Gluconeogenesis from fructose was also stimulated by phenylephrine and, more markedly, by glucagon at the expense of the conversion of fructose into lactate. Insulin was able to antagonize the stimulatory effect of phenylephrine on gluconeogenesis from pyruvate. When Ca2+ was removed from the incubation medium, phenylephrine still stimulated gluconeogenesis from pyruvate, but it also caused an activation of protein kinase and an inactivation of pyruvate kinase; accordingly, the concentration of phosphoenolpyruvate was increased, and, in contrast, vasopressin had no effect on all these parameters. The property of phenylephrine to cause the activation of glycogen phosphorylase was decreased by glucose or by the absence of Ca2+; it was abolished when these two conditions were combined. Glycogen synthase was inactivated by phenylephrine in the presence or the absence of Ca2+, although presumably by different mechanisms.  相似文献   

3.
Angiotensin II, catecholamines, and vasopressin are thought to stimulate hepatic glycogenolysis and gluconeogenesis via a cyclic AMP-independent mechanism that requires calcium ion. The present study explores the possibility that angiotensin II and vasopressin control the activity of regulatory enzymes in carbohydrate metabolism through Ca2+-dependent changes in their state of phosphorylation. Intact hepatocytes labeled with [32P]PO43- were stimulated with angiotensin II, glucagon, or vasopressin and 30 to 33 phosphorylated proteins resolved from the cytoplasmic fraction of the cell by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. Treatment of the cells with angiotensin II or vasopressin increased the phosphorylation of 10 to 12 of these cytosolic proteins without causing measurable changes in cyclic AMP-dependent protein kinase activity. Glucagon stimulated the phosphorylation of the same set of 11 to 12 proteins through a marked increase in cyclic AMP-dependent protein kinase activity. The molecular weights of three of the protein bands whose phosphorylation was increased by these hormones correspond to the subunit molecular weights of phosphorylase (Mr = 93,000), glycogen synthase (Mr = 85,000), and pyruvate kinase (Mr = 61,000). Two of these phosphoprotein bands were positively identified as phosphorylase and pyruvate kinase by affinity chromatography and immunoprecipitation, respectively. Incubation of hepatocytes in a Ca2+-free medium completely abolished the effects of angiotensin II and vasopressin on protein phosphorylation but did not alter those of glucagon. Treatment of hepatocytes with angiotensin II, glucagon, or vasopressin stimulated phosphorylase activity by 250 to 260%, inhibited glycogen synthase activity by 50%, and inhibited pyruvate kinase activity by 30 to 35% (peptides) to 70% (glucagon). The effects of angiotensin II and vasopressin on the activity of all three enzymes were completely abolished if the cells were incubated in a Ca2+-free medium while those of glucagon were not altered. The results imply that angiotensin II, catecholamines, and vasopressin control hepatic carbohydrate metabolism through a Ca2+-requiring, cyclic AMP-independent pathway that leads to the phosphorylation of important regulatory enzymes.  相似文献   

4.
1. Glucagon stimulated gluconeogenesis from both [U-14C]lactate and [14C]xylitol in isolated perfused mouse liver. 2. Addition of cyclic AMP also stimulated gluconeogenesis from [U-14C]lactate. 3. Glucagon caused a rapid (2.5 min) 12-fold increase in hepatic cyclic AMP but not cyclic GMP concentration. 4. Glucagon caused a rapid and stable decrease in hepatic fructose 1,6-diphosphatase activity measured in vitro. 5. The results are interpreted to indicate that glucagon stimulates hepatic gluconeogenesis in mice via cyclic AMP by two different mechanisms: (a) increased substrate uptake (i.e. utilization) and (b) increased gluconeogenic efficiency (i.e. inhibition of alternate substrate fates).  相似文献   

5.
Methods have been developed to measure the lysophospholipid content and matrix volume of liver cell mitochondria in situ in order to test the hypothesis that these parameters may be important in the hormonal control of mitochondrial function [Armston, Halestrap & Scott (1982) Biochim. Biophys. Acta 681, 429-439]. No change in the labelling of mitochondrial lysophospholipids with [32P]Pi was detected after treatment of liver cells with glucagon, phenylephrine or vasopressin. Incorporation of [32P]Pi into mitochondrial phosphatidylinositol was enhanced by phenylephrine and vasopressin. Mitochondrial volumes were measured using rapid disruption of cells by sonication into 3H2O and [14C]sucrose or without cell disruption using 3H2O and [14C]mannitol. In control cells the two methods gave values of 1.09 and 0.40 microliters/mg of mitochondrial protein respectively, which represent 19 and 7% respectively of the total cell volume measured with 3H2O and inulin [14C]carboxylic acid. Both methods showed that glucagon, phenylephrine and 1 nm-valinomycin produced significant increases (13% and 26% using sucrose and mannitol respectively) in mitochondrial volume. The increase was coincident with the stimulation of gluconeogenesis from L-lactate and pyruvate and of mitochondrial respiratory chain activity. The effects of glucagon and phenylephrine were additive on both mitochondrial volume and respiratory chain activity, but not on gluconeogenesis. Liver cells exposed to gluconeogenic hormones or low concentrations of valinomycin showed a decrease in light scattering at 520 nM correlating with the change in mitochondrial volume but without a change in whole-cell volume. The time course and hormone sensitivity of this response were similar to those for the hormonal stimulation of gluconeogenesis. The light-scattering response to glucagon, phenylephrine and vasopressin, but not to valinomycin, were greatly reduced or abolished in Ca2+-free media.  相似文献   

6.
1. Vasopressin (anti-diuretic hormone, [8-arginine]vasopressin) stimulated the breakdown of glycogen in perfused livers of fed rats, at concentrations (50-600muunits/ml) that have been reported in the blood of intact rats, especially during acute haemorrhagic shock. 2. In perfused livers from starved rats, vasopressin (30-150muunits/ml) stimulated gluconeogenesis from a mixture of lactate, pyruvate and glycerol. 3. Vasopressin prevented accumulation of liver glycogen in the perfused liver of starved rats, or in starved intact rats. 4. The action of vasopressin on hepatic carbohydrate metabolism thus resembles that of glucagon; the minimum effective circulating concentrations of these hormones are of the same order (100pg/ml). 5. The stimulation of hepatic glucose output by vasopressin is discussed in connexion with the release of glucose and water from the liver.  相似文献   

7.
The sensitivity of glucose production from L-lactate by isolated liver cells from starved rats to inhibition by alpha-cyano-4-hydroxycinnamate was studied. A small percentage of the maximal rate of gluconeogenesis was insensitive to inhibition by alpha-cyano-4-hydroxycinnamate, and evidence is presented to show that this is due to pyruvate entry into the mitochondria as alanine. After subtraction of this rate, Dixon plots of the reciprocal of the rate of gluconeogenesis against inhibitor concentration were linear both in the absence and presence of glucagon, phenylephrine or valinomycin, each of which stimulated gluconeogenesis by 30-50%. Pyruvate kinase activity was decreased by glucagon, but not by phenylephrine or valinomycin. Inhibition of gluconeogenesis by quinolinate (inhibitor of phosphoenolpyruvate carboxykinase) or monochloroacetate (probably inhibiting pyruvate carboxylation) caused a significant deviation from linearity of the Dixon plot obtained with alpha-cyano-4-hydroxycinnamate. Amytal, however, inhibited gluconeogenesis without affecting the linearity of this plot. These data, coupled with a computer simulation study, suggest that pyruvate transport may control gluconeogenesis from L-lactate and that hormones may stimulate this process through an effect on the respiratory chain. An additional role for pyruvate kinase and pyruvate carboxylase is quite compatible with the data presented.  相似文献   

8.
The effects of hormones on the cytochrome spectra of isolated hepatocytes were recorded under conditions of active gluconeogenesis from L-lactate. Glucagon, phenylephrine, vasopressin and valinomycin, at concentrations that caused stimulation of gluconeogenesis, increased the reduction of the components of the cytochrome bc1 complex, just as has been observed in liver mitochondria isolated from glucagon-treated rats [Halestrap (1982) Biochem. J. 204, 37-47]. The effects of glucagon and phenylephrine were additive. The time courses of the increased reduction of cytochrome c/c1 and NAD(P)H/NAD(P)+ caused by hormones, valinomycin, A23187 and ethanol were measured by dual-beam spectrophotometry and fluorescence respectively. Ethanol (14 mM) produced a substantial rise in NAD(P)H fluorescence, beta-hydroxybutyrate/acetoacetate and lactate/pyruvate ratios, no change in cytochrome c/c1 reduction, a 10% decrease in O2 consumption and a 60% decrease in gluconeogenesis. Glucagon, phenylephrine and vasopressin caused a substantial and transient rise in NAD(P)H fluorescence, but a sustained increase in cytochrome c/c1 reduction and the rates of O2 consumption and gluconeogenesis. The transience of the fluorescence response was greater in the absence of Ca2+, when the cytochrome c/c1 response also became transient. The fluorescence response was smaller and less transient, but the cytochrome c/c1 response was greater, in the presence of fatty acids. Both responses were greatly decreased by the presence of 1 mM-pent-4-enoate. Valinomycin (2.5 nM) caused a decrease in NAD(P)H fluorescence coincident with an increase in cytochrome c/c1 reduction and the rate of gluconeogenesis and O2 consumption. A23187 (7.5 mM) caused increases in both NAD(P)H fluorescence and cytochrome c/c1 reduction. The effects of hormones and valinomycin on the time courses of NAD(P)H fluorescence, cytochrome c/c1 reduction and light-scattering by hepatocytes were compared with those of 0.5 microM-Ca2+ or 1 nM-valinomycin on the same parameters of isolated liver mitochondria. It is concluded that hormones increase respiration by hepatocytes in a biphasic manner. An initial Ca2+-dependent activation of mitochondrial dehydrogenases rapidly increases the mitochondrial [NADH], which is followed by a volume-mediated stimulation of fatty acid oxidation and electron flow between NADH and cytochrome c. 10. Amytal (0.5 mM) was able to reverse the effects of hormones on the reduction of cytochromes c/c1 and the rates of gluconeogenesis and O2 consumption without significantly lowering tissue [ATP].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
(1) The effects of glucagon, dibutyryl cyclic AMP, vasopressin, phenylephrine, and isoproterenol on glycogenolysis and gluconeogenesis were investigated using isolated ovine hepatocytes. (2) Glycogenolysis was stimulated by all effectors except vasopressin. The response to alpha-agonists was greater than that of beta-agonists in older animals. Stimulation by beta-agonists increased after 30 h primary culture. (3) Gluconeogenesis from propionate or L-lactate plus pyruvate was stimulated to a small extent by dibutyryl cyclic AMP, glucagon and isoproterenol but not by vasopressin or phenylephrine. (4) No effects of lactation were observed. (5) Data are compared to results obtained in other species and the physiological significance of the results in relation to the ruminant is discussed.  相似文献   

10.
Hepatocytes and Kupffer cells were separated from rat liver after prelabeling the Kupffer cells with colloidal iron and perfusion of the liver with digestive enzymes. The activity of several enzymes from Kupffer cells and hepatocytes was compared to validate this method of cell separation. The ratios of hepatocyte to Kupffer cell specific activities of glucose-6-phosphatase, 5'-nucleotidase, adenylate cyclase, and acid phosphatase were 20, 0.39, 0.18, and 0.078, respectively. Adenylate cyclases from hepatocytes and Kupffer cells were stimulated by fluoride ion, GTP, and catecholamines. Hepatocyte adenylate cyclase was also stimulated by glucagon, secretin, vasoactive intestinal polypeptide, and by prostaglandin E1, whereas, the Kupffer cell enzyme was completely insensitive to these hormones. The stimulation of hepatocyte adenylate cyclase by combinations of glucagon plus secretin, or glucagon plus vasoactive intestinal polypeptide, were equivalent to the sum of the individual stimulations. This suggests that the hepatocyte has specific receptors for glucagon and for vasoactive intestinal polypeptide and secretin. Prostaglandin E1 stimulation of hepatocyte adenylate cyclase was not additive to the stimulation caused by polypeptide hormones or catecholamines, nor did prostaglandin E1 decrease stimulation caused by these hormones. Although prostaglandin-sensitive adenylate cyclase was recovered with hepatocytes, 40 to 50% of the total liver prostaglandin-sensitive activity was recovered in a fraction of cell debris mixed with small cells which did not phagocytize colloidal iron.  相似文献   

11.
Rat liver hepatocytes were isolated by collagenase in vitro perfusion technique and the effect of epinephrine, glucagon and insulin on glycogenolysis was studied. Both glucagon and epinephrine at the concentration of 10?6M, stimulated gluconeogenesis by 80–100%. Addition of insulin (33 μUnits/ml) completely abolished the epinephrine-stimulated glycogenolysis whereas only 50% inhibition was observed with insulin in glucagon stimulated glycogenolysis. This stimulation was observed within 2–5 min after the addition of the hormones. These results suggest that hepatocytes isolated with low concentrations of collagenase retain glucagon, epinephrine and insulin receptor sites.  相似文献   

12.
1. In hepatocytes from starved rats, vasopressin, angiotensin (angiotensin II) and oxytocin stimulated gluconeogenesis from lactate by 25--50%; minimal effective concentrations were about 0.02pM, 1 nM and 0.2 nM respectively. 2. Vasopressin and angiotensin also stimulated gluconeogenesis from alanine, pyruvate, serine and glycerol. EGTA decreased gluconeogenesis from these substrates. 3. Hormonal stimulation of gluconeogenesis from lactate was abolished in the absence of extracellular Ca2+. 4. Insulin did not prevent stimulation of gluconeogenesis by vasopressin or angiotensin. 5. The potency of the stimulatory effects of vasopressin and angiotensin on hepatic gluconeogenesis suggests they are operative in vivo. Also, the data suggest that Ca2+ plays a role in the stimulation by these hormones.  相似文献   

13.
In isolated rat liver cells, vasopressin, like glucagon, promotes the metabolism of glutamine used at nearphysiological concentration (1 mM). These findings indicate that, in vivo, both hormones might participate in the control of hepatic gluconeogenesis and ureogenesis from glutamine.  相似文献   

14.
1. Isolated lamb liver cells were prepared from 24-h-starved animals by venous perfusion of the excised caudate lobe with buffer containing collagenase. On the basis of Trypan-Blue exclusion, rate of O2 uptake, adenine nucleotide content and retention of constitutive enzymes, these cells were judged to be intact. 2. Isolated caudate-lobe liver cells showed rates of gluconeogenesis from 10 mM-propionate and 10 mM-lactate that compared favourably with rates determined in isolated median-lobe cells and with rates determined with the isolated perfused lamb liver. 3. The gluconeogenic potential of substrates tested depended on the lamb's age. Cells prepared from suckling lambs (up to 20 days of age and essentially non-ruminant) showed highest rates from galactose, serine and alanine; those prepared from post-weaned lambs (older than 30 days of age and ruminant) showed highest rates from propionate, lactate and fructose. 4. Gluconeogenic rates from endogeneous precursors, 10 mM-propionate and 10mM-galactose, were linear for 1 h and were both stimulated by 1 muM-glucagon. Provided the endogenous rate of gluconeogenesis remained unchanged after substrate addition, glucagon caused a net stimulation of gluconeogenesis from each of these substrates. 5. Gluconeogenic capacity and glucagon sensitivity were examined in cells maintained in substrate-free oxygenated buffer at 37 degrees, 22 degrees and * degrees C. Even under the best of the three conditions of storage that were tested (i.e. at 22 degrees C in gelatin-containing buffer) deterioration of the lamb cells proceeded rapidly, and loss of glucagon responsiveness preceeded the loss of ability to convert precursor into glucose. 6. n-Butyric acid, 2-methylpropanoic acid and 3-methylbutanoic acid at concentrations comparable with those found in lamb portal-vein blood each stimulated gluconeogenesis from 10mM-galactose or 10mM-propionate; gluconeogenesis from galactose was stimulated to the greater extent. 7. The regulatory effects of glucagon and sodium butyrate on lamb liver-cell gluconeogenesis and glycogenolysis were compared. Glucagon (1 muM) and 2mM-butyrate accelerated the rate of glucose formation of liver cells of 24h-starved animals from lactate+pyruvate or fructose. Insulin (20nM) decreased both gluconeogenesis and the efficacy of 1 muM-glucagon. For lactate+pyruvate as substrate, the stimulatory effect of butyrate was additive to that of 1muM-glucagon and for both lactate+pyruvate and fructose the stimulatory effect of butyrate was not influenced by 20nM-insulin. In contrast with glucagon, which stimulated the rate of glycogenolysis in cells prepared from fed lambs, butyrate (0.1-20mM) had no effect. 8. It is concluded that glucagon and butyrate stimulate lamb liver-cell gluconeogenesis by different mechanisms.  相似文献   

15.
Dexamethasone stimulated gluconeogenesis from lactate/pyruvate in suspensions of hepatocytes isolated from both adrenalectomized and normal fasted rats. This stimulation was observed in incubations with 1 mM pyruvate and at a lactate/pyruvate ratio of 25 but not at a ratio of 10-13. At a lactate/pyruvate ratio of 10-13, the stimulation by dexamethasone was progressively enhanced as the pyruvate concentration was decreased to 0.25 mM. Concurrent administration of a maximally stimulating concentration of dexamethasone with angiotensin II or glucagon yielded an additive stimulation at all concentrations of the peptide hormones tested. No potentiating or permissive actions of acute glucocorticoid administration were observed using hepatocytes from either normal or adrenalectomized animals. The acute stimulation by dexamethasone was antagonized by prior addition of progesterone or cortexolone to the hepatocyte suspensions. Triamcinolone and corticosterone also stimulated gluconeogenesis. Concentrations of the active glucocorticoids needed to elicit half-maximal stimulations (Kact) were approximately 100 nM for dexamethasone and triamcinolone and 400 nM for corticosterone. Deoxycorticosterone, 17 alpha-methyltestosterone, and 5 beta-dihydrocortisol did not stimulate. Stimulation of gluconeogenesis by dexamethasone was seen following a lag averaging 9 min after the time of steroid addition. Preliminary evidence suggests that this effect was not dependent upon a stimulation of protein synthesis, but the observed stimulation and inhibition of control rates of gluconeogenesis by cycloheximide and cordycepin, respectively, demonstrate the difficulties of working with such inhibitors in attempting to answer this question.  相似文献   

16.
Mitochondria were prepared by a method including a Percoll purification step after the rapid homogenization of livers of fed rats which had been perfused either under unstimulated conditions or in the presence of vasopressin and/or glucagon. The two hormones separately or together increased the total calcium content of the mitochondria. This enhancement was accompanied by parallel increases in activities of the Ca2+-sensitive intramitochondrial enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. The effects of the two hormones on total mitochondrial calcium and on the activities of the oxidative enzymes were additive. The persistent enhancements of mitochondrial calcium content and enzyme activities were partially reversed by the addition of Na+ ions to the mitochondrial incubations; these effects of Na+ were blocked by diltiazem, a selective inhibitor of Na+-induced Ca2+ release. Mitochondria from control livers were incubated in vitro with CaCl2 to achieve various calcium content, and mitochondrial enzyme activities and calcium content were measured. A good correlation was obtained between the total calcium content and the activities of pyruvate dehydrogenase and oxoglutarate dehydrogenase. The results obtained are consistent with the hypothesis that vasopressin and glucagon additively cause increases in intramitochondrial [Ca2+] and so bring about the activations of these key enzymes of mitochondrial oxidative metabolism.  相似文献   

17.
Addition of ATP (100 microM) to hepatocytes from starved rats incubated with 5 mM [1-14C]glutamine caused a stimulation of glucose formation; the magnitude of the concomitant increases in 14CO2 production and glutamine consumption indicate that flux from glutamine to glucose was increased. ATP also caused a simultaneous decrease in the cell content of oxoglutarate; together with the increased flux this is consistent with an activation of oxoglutarate dehydrogenase. In corroboration of this, a stimulation by ATP of gluconeogenesis and a decrease in oxoglutarate was also observed with 5 mM proline as substrate. ATP caused an increase in hepatocyte cytoplasmic free Ca2+ concentration, [Ca2+]c, as indicated by the increase in the fluorescence of cytoplasmically trapped quin2, from a resting value of about 0.2 microM to greater than 1 microM. The mechanism of oxoglutarate dehydrogenase activation may be via an increase in mitochondrial Ca2+ content as a consequence of the increase in [Ca2+]c. The effects of 100 microM adenosine were also investigated. An increase in flux from glutamine to glucose was observed together with a decrease in the cell oxoglutarate, thus indicating that adenosine addition to hepatocytes could also activate oxoglutarate dehydrogenase. The activation by adenosine was less than that produced by ATP. Adenosine caused a small apparent increase in [Ca2+]c to 0.3-0.4 microM; it remains to be established if this effect, which is small relative to that of ATP, is sufficient to elicit the activation of oxoglutarate dehydrogenase: alternative mechanisms may exist.  相似文献   

18.
The effects of glucagon and vasopressin, singly or together, on cytosolic free Ca2+ concentration [( Ca2+]i) and on the 45Ca2+ efflux were studied in isolated rat liver cells. In the presence of 1 mM external Ca2+, glucagon and vasopressin added singly induced sustained increases in [Ca2+]i. The rate of the initial fast phase of the [Ca2+]i increase and the magnitude of the final plateau were dependent on the concentrations (50 pm-0.1 microM) of glucagon and vasopressin. Preincubating the cells with a low concentration of glucagon (0.1 nM) for 2 min markedly accelerated the fast phase and elevated the plateau of the [Ca2+]i increase caused by vasopressin. In the absence of external free Ca2+, glucagon and vasopressin transiently increased [Ca2+]i and stimulated the 45Ca2+ efflux from the cells, indicating mobilization of Ca2+ from internal store(s). Preincubating the cells with 0.1 nM-glucagon accelerated the rate of the fast phase of the [Ca2+]i rise caused by the subsequent addition of vasopressin. However, unlike what was observed in the presence of 1 mM-Ca2+, glucagon no longer enhanced the maximal [Ca2+]i response to vasopressin. In the absence of external free Ca2+, higher concentrations (1 nM-0.1 microM) of glucagon, which initiated larger increases in [Ca2+]i, drastically decreased the subsequent Ca2+ response to vasopressin (10 nM). At these concentrations, glucagon also decreased the vasopressin-stimulated 45Ca2+ efflux from the cells. It is suggested that, in the liver, glucagon accelerates the fast phase and elevates the plateau of the vasopressin-mediated [Ca2+]i increase respectively by releasing Ca2+ from the same internal store as that permeabilized by vasopressin, probably the endoplasmic reticulum, and potentiating the influx of extracellular Ca2+ caused by this hormone.  相似文献   

19.
The established cell lines isolated from mammalian kidney were characterized by its receptor activities against hormones and the ability to synthesize sulfolipids localized in the renal tubule. The level of 3':5'-cyclic AMP in JTC-12.P3 (monkey kidney) cells increased in 2 min as much as 2.5-5-fold on activation with 1.0 unit/ml of bovine parathyroid hormone or 1.9 units/ml of synthetic parathyroid hormone (1-34) resulting in intracellular cyclic AMP concentration of more than 40 pmol/mg protein. Prostaglandin E1 (14 micronM) and isopropylnorepinephrine (10 micronM) were also found to increase the concentration of cyclic AMP by more than 30- and 9-fold, respectively. Addition in medium of calcitonin, arginine vasopressin, adrenocorticotropic hormone and glucagon caused no significant changes of cyclic AMP level in the cell. In contrast, MDCK, a cell line isolated from canine kidney, reacted to arginine vasopressin, isopropylnorepinephrine and prostaglandin E1 and only slightly to parathyroid hormone. MDBK cell line derived from bovine kidney or fibroblast cell lines from rat lung and guinea pig kidney did not react to any of the hormones specific to kidney, i.e. arginine vasopressin, calcitonin or parathyroid hormone in the presence of theophylline. However, in the presence of 2 mM isobutylmethylxanthine, small but significant elevation of cellular cyclic AMP levels in response to calcitonin, arginine vasopressin, isopropylnorepinephrine and prostaglandin E1 was observed. The cell lines JTC-12, MDCK and MDBK, when incubated with H235SO4, incorporated the isotope into sulfolipids assigned as sulfatides and ceramide dihexoside sulfate or in MDCK also into cholesterol sulfate. The results suggested that JTC-12, MDCK and MDBK cell lines are epithelial origin and also JTC-12 and MDCK originated most probably from renal tubular cells of cortex and medulla, respectively.  相似文献   

20.
A perfused liver system incorporating a Ca2+-sensitive electrode was used to study the long-term effects of glucagon and cyclic AMP on the mobilization of Ca2+ induced by phenylephrine, vasopressin and angiotensin. At 1.3 mM extracellular Ca2+ the co-administration of glucagon (10 nM) or cyclic AMP (0.2 mM) and a Ca2+-mobilizing hormone led to a synergistic potentiation of Ca2+ uptake by the liver, to a degree which was dependent on the order of hormone administration. A maximum net amount of Ca2+ influx, corresponding to approx. 3800 nmol/g of liver (the maximum rate of influx was 400 nmol/min per g of liver), was induced when cyclic AMP or glucagon was administered about 4 min before vasopressin and angiotensin. These changes are over an order of magnitude greater than those induced by Ca2+-mobilizing hormones alone [Altin & Bygrave (1985) Biochem. J. 232, 911-917]. For a maximal response the influx of Ca2+ was transient and was essentially complete after about 20 min. Removal of the hormones was followed by a gradual efflux of Ca2+ from the liver over a period of 30-50 min; thereafter, a similar response could be obtained by a second administration of hormones. Dose-response measurements indicate that the potentiation of Ca2+ influx by glucagon occurs even at low (physiological) concentrations of the hormone. By comparison with phenylephrine, the stimulation of Ca2+ influx by vasopressin and angiotensin is more sensitive to low concentrations of glucagon and cyclic AMP, and can be correlated with a 20-50-fold increase in the calcium content of mitochondria. The reversible uptake of such large quantities of Ca2+ implicates the mitochondria in long-term cellular Ca2+ regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号