首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annona (Annonaceae) is an important source of fruits in the Brazilian Cerrado and the Amazon Rainforest. Some Annona species are widely commercialized as fresh fruit or as frozen pulp. Seeds are accustomedly discarded. Our main goal was to analyze fatty acids profile from seeds of A. crassiflora and A. coriacea from Cerrado, A. montana from Amazon Forest, and three cultivars (A. cherimola cv. Madeira, A. cherimola x A. squamosa cv. Pink’s Mammonth and A. cherimola x A. squamosa cv. Gefner). The total oil yield ranged between 20 and 42% by weight of dry mass. The A cherimola x A. squamosa cv. Gefner has significantly higher total lipid yield than all other samples. 100 g of fruit of this species present 6-8 g of seeds. Considering the fruit production of Chile (over 221 ton of fruits/year), more than 1300 ton of seed/year could be obtained, which could provide at least 200 ton of seed oil. Oleic acid was predominant for most samples, but for A. montana linoleic acid was the most abundant FA. Phenotypic variation on FAME profile was observed. These new data are an urgent requirement for supporting conservation programs, mainly for Cerrado areas in Brazil.  相似文献   

2.
The genetic basis of developmental stability, measured as asymmetry (fluctuating asymmetry in leaves), was analyzed in leaves and flowers of cherimoya (Annona cherimola Mill) and atemoya (A. cherimola × A. squamosa). The individuals analyzed belonged to a controlled collection of cultivars (clones) that had previously been characterized by means of isozymes. We used a nested design to analyze the differences in asymmetry at several sampling levels: individual leaves and flowers, individual trees, and genotypes. The clonal repeatability of developmental stability was not significantly different from zero, thus suggesting the absence of heritability of the asymmetry for leaves and flowers under these environmental conditions. No relationship between asymmetry and individual heterozygosity was found, but leaf fluctuating asymmetry was significantly related to particular isozymic genes. Petal and leaf size showed a phenotypically plastic response to the exposure zone of the tree (mainly due to light). Leaf fluctuating asymmetry also showed such a plastic response. No significant correlation was found between asymmetry and any pomological characters (some of these being fitness related). Finally, the hybrid species (atemoya) did not show larger developmental instability than did the parental species (cherimoya). All these data show that cherimoya asymmetry reveals the random nature of developmental noise, with developmental stability for leaves being possibly related to specific chromosome regions, but with weak evidence for genotypic differences in developmental stability.  相似文献   

3.
The allelic segregation of 13 isozyme loci in hand-fertilized heterozygous cherimoya trees (Annona cherimola Mill.) has been studied. We analyzed 63 locus x progeny combinations and found non-Mendelian segregation in 12 cases. The sequential Bonferroni method revealed only eight cases of non-Mendelian segregation; these have been investigated with several chi-square tests to discover what processes were involved. Gametic selection appears to be the main contributor, although zygotic selection seems also to play a part.  相似文献   

4.
Ralstonia solanacearum, the causal agent of bacterial wilt disease, is considered one of the most destructive bacterial pathogens due to its lethality, unusually wide host range, persistence and broad geographical distribution. In spite of the extensive research on plant immunity over the last years, the perception of molecular patterns from R. solanacearum that activate immunity in plants is still poorly understood, which hinders the development of strategies to generate resistance against bacterial wilt disease. The perception of a conserved peptide of bacterial flagellin, flg22, is regarded as paradigm of plant perception of invading bacteria; however, no elicitor activity has been detected for R. solanacearum flg22. Recent reports have shown that other epitopes from flagellin are able to elicit immune responses in specific species from the Solanaceae family, yet our results show that these plants do not perceive any epitope from R. solanacearum flagellin. Searching for elicitor peptides from R. solanacearum, we found several protein sequences similar to the consensus of the elicitor peptide csp22, reported to elicit immunity in specific Solanaceae plants. A R. solanacearum csp22 peptide (csp22Rsol) was indeed able to trigger immune responses in Nicotiana benthamiana and tomato, but not in Arabidopsis thaliana. Additionally, csp22Rsol treatment conferred increased resistance to R. solanacearum in tomato. Transgenic A. thaliana plants expressing the tomato csp22 receptor (SlCORE) gained the ability to respond to csp22Rsol and became more resistant to R. solanacearum infection. Our results shed light on the mechanisms for perception of R. solanacearum by plants, paving the way for improving current approaches to generate resistance against R. solanacearum.  相似文献   

5.
Cherimoya (Annona cherimola) is a subtropical tree crop of Andean origin whose fruit set results extremely low in farming areas outside of its natural occurrence. The lack of efficient pollinators and dichogamy are often argued to be the main constraints resulting in this low reproductive success. Herein, we describe the reproductive barriers exhibited by this crop and whether wind and insects play a role in cherimoya pollination in Spain, the main region of cultivation. A.?cherimola exhibits marked protogynous dichogamy with large differences in the duration of female (around 28?h) and male (<8?h) phases. Stigma receptivity and pollen release do not fully coincide with the morphological changes of the petals defining the female and male phases. Synchronization of sexual phases among different flowers from different trees of the same genotype was high during the whole blooming season. Effective herkogamy of approach type also limits pollen deposition within the same flower. Wind does not play any role in cherimoya pollination. Insect visitors to cherimoya flowers in Spain were found to be inefficient in transferring pollen grains. Cherimoya flowers do not reject self-pollen to achieve fertilization. A.?cherimola shows preferential allogamy based on efficient dichogamy reinforced by elevated synchrony among flowers in their sexual phases. Herkogamy hampers autogamy, although pollen deposition by gravity in cherimoya pendulous flowers explains the reduced reproductive success observed in isolated flowers.  相似文献   

6.
7.
A syringe-like type III secretion system (T3SS) plays essential roles in the pathogenicity of Ralstonia solanacearum, which is a causal agent of bacterial wilt disease on many plant species worldwide. Here, we characterized functional roles of a CysB regulator (RSc2427) in Rsolanacearum OE1-1 that was demonstrated to be responsible for cysteine synthesis, expression of the T3SS genes, and pathogenicity of Rsolanacearum. The cysB mutants were cysteine auxotrophs that failed to grow in minimal medium but grew slightly in host plants. Supplementary cysteine substantially restored the impaired growth of cysB mutants both in minimal medium and inside host plants. Genes of cysU and cysI regulons have been annotated to function for Rsolanacearum cysteine synthesis; CysB positively regulated expression of these genes. Moreover, CysB positively regulated expression of the T3SS genes both in vitro and in planta through the PrhG to HrpB pathway, whilst impaired expression of the T3SS genes in cysB mutants was independent of growth deficiency under nutrient-limited conditions. CysB was also demonstrated to be required for exopolysaccharide production and swimming motility, which contribute jointly to the host colonization and infection process of Rsolanacearum. Thus, CysB was identified here as a novel regulator on the T3SS expression in R. solanacearum. These results provide novel insights into understanding of various biological functions of CysB regulators and complex regulatory networks on the T3SS in R. solanacearum.  相似文献   

8.
The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.  相似文献   

9.
A species‐specific Polymerase Chain Reaction (sPCR) method was developed to identify and detect isolates of Ralstonia solanacearum, the cause of bacterial wilt disease in chilli. PCR primers for R. solanacearum were identified by alignment of hrpB gene sequences and selection of sequences specific for R. solanacearum at their 3′ ends. The primers were shown to be specific for R. solanacearum, as no PCR product was obtained when genomic DNA from other bacterial species including closely related Ralstonia species, were used as test species. Lone pair of primers (RshrpBF and RshrpBR) was designed using hrpB gene sequence, unique to R. solanacearum which amplified a predicted PCR product of 810 bp from 20 different isolates. Phylogenetic analysis was also attempted to understand the evolutionary divergence of Indian R. solanacearum isolates. Based on phylogenetic analysis, Indian isolates showed homology with the standard reference isolates from other countries but, interestingly, one new isolate showed complete evolutionary divergence by forming an out‐group.  相似文献   

10.
A detection assay for Ralstonia solanacearum in soil and weeds was developed by combining immunocapture and the polymerase chain reaction (IC‐PCR). Anti‐R. solanacearum polyclonal antibodies were produced in a white female rabbit and Dynal® super‐paramagnetic beads were coated with purified immunoglobulinG (IgG). Using IC‐PCR, the 718 bp target DNA was amplified at a detection threshold of approximately 104 colony‐forming units (CFU) bacteria per millilitre of suspension. DNA was not amplified in soil suspensions derived from autoclaved and non‐autoclaved soils, which contained R. solanacearum at 1–105 CFU/g soil. However, a positive PCR result was obtained when bacteria in the soil suspensions were first enriched in nutrient broth. IC‐PCR detected R. solanacearum in tomato stems 24 h after inoculation by stem puncture with a suspension containing approximately 105 CFU/ml. IC‐PCR detected the bacterium in 28 of 55 (51%) weeds and 10 of 32 (31%) soil samples. Of the weeds, Physalis minima, Amaranthus spinosus and Euphorbia hirta had the highest incidence of infection. R. solanacearum was not detected in soil taken from fallow fields, but it was discovered in some weed species. Symptomless tomato and pepper plants collected from the fields in which tomato bacterial wilt had previously occurred were found to contain R. solanacearum. These discoveries suggest that weeds and latent hosts may play a role in the survival of R. solanacearum between cropping cycles.  相似文献   

11.
Ralstonia solanacearum, the causal agent of the devastating bacterial wilt disease, is of particular interest to the scientific community. The repertoire of type III effectors plays an important role in the evasion of plant immunity, but tolerance to plant immunity is also crucial for the survival and virulence of R. solanacearum. Nevertheless, a systematic study of R. solanacearum tolerance to plant immunity is lacking. In this study, we used exogenous salicylic acid (SA) to improve the immunity of tomato plants, followed by transposon insertion sequencing (Tn-seq) analysis and the identification of R. solanacearum genes associated with tolerance to plant immunity. Target gene deletion revealed that the lipopolysaccharide (LPS) production genes RS_RS02830, RS_RS03460, and RS_RS03465 are essential for R. solanacearum tolerance to plant immunity, and their expression is induced by plant immunity, thereby expanding our knowledge of the pathogenic function of R. solanacearum LPS. SA treatment increased the relative abundance of transposon insertion mutants of four genes, including two genes with unknown function, RS_RS11975 and RS_RS07760. Further verification revealed that deletion of RS_RS11975 or RS_RS07760 resulted in reduced in vivo competitive indexes but increased tolerance to plant immunity induced by SA treatment, suggesting that these two genes contribute to the trade-off between tolerance to plant immunity and fitness cost. In conclusion, this work identified and validated R. solanacearum genes required for tolerance to plant immunity and provided essential information for a more complete view of the interaction between R. solanacearum and the host plant.  相似文献   

12.
Effect of interactions of Meloidogyne incognita with Ralstonia solanacearum and interaction of M. incognita with Pectobacterium carotovorum were studied in sequential and simultaneous inoculations on potato (Solanum tuberosum). Inoculation of M. incognita caused a lesser reduction in plant growth than caused by R. solanacearum. Inoculation of M. incognita plus R. solanacearum caused a greater reduction in plant growth than the damage caused by either pathogen. Inoculation of M. incognita prior to R. solanacearum resulted in a greater reduction in plant growth than R. solanacearum was inoculated prior to M. incognita. However, inoculation of M. incognita or P. carotovorum caused similar reduction in plant growth. Inoculation of P. carotovorum prior to M. incognita caused lesser reduction in plant growth than simultaneous inoculation of both pathogens. Inoculation of M. incognita caused galling in potato roots but the size of galls was small. Inoculation of P. carotovorum or R. solanacearum with M. incognita had adverse effect on galling and nematode multiplication. Wilting or soft rot index was 3 when R. solanacearum or P. carotovorum was inoculated alone. In other treatments, where R. solanacearum or P. carotovorum was inoculated with M. incognita, wilting or soft rot indices were 5.  相似文献   

13.
 Using a PCR-based assay with highly specific primers, we were able to clearly identify all of 28 different Pseudomonas solanacearum strains, whereas none of the other bacteria tested gave a cross reaction. The PCR sensitivity in standard dilution experiments of pure strains was in the range of 10 to 100 cells. The assay was also investigated for its suitability in routine diagnosis of potato tubers and tomato plants inoculated with various amounts of P. solanacearum; it reached a sensitivity of 103 cells per specimen. The region between primers PS96H and PS96I was sequenced for the first time and aligned. A total of 17 P. solanacearum strains have been sequenced, resulting in six different sequence groups. When the variable sequence was analyzed, a high correlation between point mutations and geographical origin of the P. solanacearum strains was revealed. The PCR assay described in this study combined with automatical sequencing of the amplificated region provides a powerful tool for the epidemiology of P. solanacearum. Received: 1 September 1997 / Accepted: 15 October 1997  相似文献   

14.
Ralstonia solanacearum is an economically important, bacterial plant pathogen which affects a wide range of crop plants. R. solanacearum survives in the soil for many years and weeds serve as symptomless carrier. One of the important aspects in controlling R. solanacearum is its early detection. In this study, detection threshold of R. solanacearum in the soil was standardised using polymerase chain reaction (PCR) method. The minimum threshold limit ranged between 6.8 × 10 and 3.6 × 102 CFU g?1 of soil. Using this standardised protocol R. solanacearum was detected from the rhizosphere soil of eggplants showing varying degrees of wilt. PCR method was quite sensitive to detect R. solanacearum from the xylem fluid of eggplant. Presence of R. solanacearum in the soil infected with capsicum wilt was also demonstrated successfully and the minimum detection limit was 4 × 102 CFU g?1 of soil. The bacterium was not detected from the eggplant seeds collected during 2006 and 2007 seasons. However, the bacterium was detected from the weed (Alternanthera sessilis) grown in the eggplant field indicating the possibility of weeds serving as symptomless carrier. Using our method, it is possible to detect R. solanacearum from soil, plant and weeds grown in the field at an early stage so that proper management strategies could be taken to prevent the infection and further spread of the pathogen.  相似文献   

15.
Ralstonia solanacearum is responsible for bacterial wilt affecting many crops worldwide. The emergent population of R. solanacearum (phylotype IIB/4NPB) wilts previously resistant varieties and has rapidly spread throughout Martinique. No conventional method is known to control it. In this study, previous crops used as sanitizing crops were investigated as an environmentally safe alternative method of control. The ability of the emergent population of R. solanacearum to persist in planta and in the rhizosphere of Brassicaceae, Asteraceae and Fabaceae grown as previous crops was evaluated in controlled conditions, and the incidence of bacterial wilt was assessed in the following tomato crop. Results showed that all species carried R. solanacearum latently. Among Brassicaceae and Asteraceae, the highest density of R. solanacearum was found in planta and in the rhizosphere of Tagetes erecta. The density of the R. solanacearum population in the rhizosphere of Raphanus sativus cv. Karacter was significantly higher than that in Raphanus sativus cv. Melody. In Fabaceae, the density of R. solanacearum population in planta was statistically similar in all species. The density of the R. solanacearum population in the rhizosphere of Crotalaria juncea was significantly higher than that in Crotalaria spectabilis. This study showed for the first time that Crotalaria spectabilis and Raphanus sativus cv. Melody grown as previous crops improve the performance of the following tomato with similar effects on R. solanacearum populations in the soil as bare soil. The incidence of the disease in tomato decreased by 86% and 60%, after R. sativus cv. Melody and C. spectabilis, respectively, and the proportion of infected plants also decreased. These results suggest that C. spectabilis and R. sativus cv. Melody can be used as previous crops to help bacterial wilt control in ecological management strategies without drastic suppression of R. solanacearum population in stem tissues and in the rhizosphere.  相似文献   

16.
Li  Shili  Xu  Chen  Wang  Jiao  Guo  Bing  Yang  Liang  Chen  Juanni  Ding  Wei 《Plant and Soil》2017,412(1-2):381-395
Aim

The secretion of allelochemicals from plant roots plays a key role in soil sickness and soil-borne disease. The goal of this study was to investigate the role of allelopathic chemicals in Ralstonia solanacearum-infected tobacco roots.

Methods

The organic acids investigated in the present study are major components of tobacco root exudates. Through a swarming assay, we assessed the chemotaxis and colonization of R. solanacearum in response to organic acids.

Results

Fumaric acid was detected, and the results showed that this acid could serve as a semiochemical for attracting R. solanacearum and inducing the formation of biofilms of this species. The results also revealed that cinnamic and myristic acids play significant roles on swarming motility and chemotaxis. In addition, cinnamic, myristic and fumaric acids could enhance the expression of chemotaxis- and motility-related genes in R. solanacearum cultured in minimal medium. Furthermore, these three acids promote R. solanacearum colonization and accelerate disease progression in tobacco.

Conclusion

Cinnamic, myristic and fumaric acids could serve as semiochemical attractants to induce the colonization and infection of R. solanacearum. The results of the present study enhance our understanding of the ecological effects of plant root exudates in plant-microbe interactions and help to reveal the relationship between tobacco bacterial wilt and the autotoxins and allelochemicals that accumulate from root exudates.

  相似文献   

17.
PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R.  solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain‐like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two‐hybrid assays and in Arabidopsis protoplast co‐immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis.  相似文献   

18.
Summary A micropropagation procedure for the adult cherimoya tree (Annona cherimola Mill.) is described. Axillary shoot proliferation was obtained after culturing nodal sections from Annona cherimola cv. ‘Fino de Jete’, on Murashige and Skoog (MS) medium supplemented with 2.28 μM zeatin. Roots were induced after preincubation of shoots for 3d in light on MS basal medium supplemented with lgl−1 activated charcoal, followed by culturing for 10 d (7 d dark and 3 d light) on MS medium with 492 μM indole-3-butyrie acid (IBA), 15 gl−1 sucrose, and 200 mgl−1 citric acid. Sixty-eight percent of induced shoots rooted after transferring to the same medium without auxin and with the macroelements at half strength and the sucrose at 20gl−1. About 65% of rooted shoots survived after acclimatization. The procedures described herein may prove useful for clonal micropropagation of selected genotypes of cherimoya.  相似文献   

19.
Bacterial wilt, caused by Ralstonia solanacearum, is one of the most serious diseases of tomato (Solanum lycopersicum). Concomitant infection of R. solanacearum and root‐knot nematode Meloidogyne incognita increases the severity of bacterial wilt in tomato, but the role of this nematode in disease complexes involving bacterial pathogens is not completely elucidated. Although root wounding by root‐knot nematode infection seems to play an important role, it might not entirely explain the increased susceptibility of plants to R. solanacearum. In the present study, green fluorescent protein (GFP)‐labelled R. solanacearum distribution was observed in the root systems of the tomato cultivar Momotaro preinoculated with root‐knot nematode or mock‐inoculated with tap water. Fluorescence microscopy revealed that GFP‐labelled R. solanacearum mainly colonized root‐knot nematode galls, and little or no green fluorescence was observed in nematode‐uninfected roots. These results suggest that the gall induced by the nematode is a suitable location for the growth of R. solanacearum. Thus, it is crucial to control both R. solanacearum and root‐knot nematode in tomato production fields to reduce bacterial wilt disease incidence and effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号