首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After synthesis in the cytosol, Ras proteins must be targeted to the inner leaflet of the plasma membrane for biological activity. This targeting requires a series of C-terminal posttranslational modifications initiated by the addition of an isoprenoid lipid in a process termed prenylation. A search for factors involved in the intracellular trafficking of Ras has identified a specific and prenylation-dependent interaction between tubulin/microtubules and K-Ras. In this study, we examined the structural requirements for this interaction between K-Ras and microtubules. By using a series of chimeras in which regions of the C terminus of K-Ras were replaced with those of Ha-Ras and vice versa, we found that the polylysine region of K-Ras located immediately upstream of the prenylation site is required for binding of K-Ras to microtubules. Studies in intact cells confirmed the importance of the K-Ras polylysine region for microtubule binding, as deletion or replacement of this region resulted in loss of paclitaxel-induced mislocalization of a fluorescent K-Ras fusion protein. The additional modifications in the prenyl protein processing pathway also affected the interaction of K-Ras with microtubules. Removal of the three C-terminal amino acids of farnesylated K-Ras with the specific endoprotease Rce1p abolished its binding to microtubules. Interestingly, however, methylation of the C-terminal prenylcysteine restored binding. Consistent with these results, localization of the fluorescent K-Ras fusion protein remained paclitaxel-sensitive in cells lacking Rce1, whereas no paclitaxel effect was observed in cells lacking the methyltransferase. These studies show that the polylysine region of K-Ras is critical for its interaction with microtubules and provide the first evidence for a functional consequence of Ras C-terminal proteolysis and methylation.  相似文献   

2.
K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling.  相似文献   

3.
Gomez GA  Daniotti JL 《The FEBS journal》2007,274(9):2210-2228
K-Ras is a small G-protein, localized mainly at the inner leaflet of the plasma membrane. The membrane targeting signal of this protein consists of a polybasic C-terminal sequence of six contiguous lysines and a farnesylated cysteine. Results from biophysical studies in model systems suggest that hydrophobic and electrostatic interactions are responsible for the membrane binding properties of K-Ras. To test this hypothesis in a cellular system, we first evaluated in vitro the effect of electrolytes on K-Ras membrane binding properties. Results demonstrated the electrical and reversible nature of K-Ras binding to anionic lipids in membranes. We next investigated membrane binding and subcellular distribution of K-Ras after disruption of the electrical properties of the outer and inner leaflets of plasma membrane and ionic gradients through it. Removal of sialic acid from the outer plasma membrane caused a redistribution of K-Ras to recycling endosomes. Inhibition of polyphosphoinositide synthesis at the plasma membrane, by depletion of cellular ATP, resulted in a similar subcellular redistribution of K-Ras. Treatment of cells with ionophores that modify transmembrane potential caused a redistribution of K-Ras to cytoplasm and endomembranes. Ca2+ ionophores, compared to K+ ionophores, caused a much broader redistribution of K-Ras to endomembranes. Taken together, these results reveal the dynamic nature of interactions between K-Ras and cellular membranes, and indicate that subcellular distribution of K-Ras is driven by electrostatic interaction of the polybasic region of the protein with negatively charged membranes.  相似文献   

4.
Calmodulin activates the skeletal muscle Ca(2+) release channel RYR1 at nm Ca(2+) concentrations and inhibits the channel at microm Ca(2+) concentrations. Using a deletion mutant of calmodulin, we demonstrate that amino acids 2-8 are required for high affinity binding of calmodulin to RYR1 at both nm and microm Ca(2+) concentrations and are required for maximum inhibition of the channel at microm Ca(2+) concentrations. In contrast, the addition of three amino acids to the N terminus of calmodulin increased the affinity for RYR1 at both nm and microm Ca(2+) concentrations, but destroyed its functional effects on RYR1 at nm Ca(2+). Using both full-length RYR1 and synthetic peptides, we demonstrate that the calmodulin-binding site on RYR1 is likely to be noncontiguous, with the C-terminal lobe of both apocalmodulin and Ca(2+)-calmodulin binding to amino acids between positions 3614 and 3643 and the N-terminal lobe binding at sites that are not proximal in the primary sequence. Ca(2+) binding to the C-terminal lobe of calmodulin converted it from an activator to an inhibitor, but an interaction with the N-terminal lobe was required for a maximum effect on RYR1. This interaction apparently depends on the native sequence or structure of the first few amino acids at the N terminus of calmodulin.  相似文献   

5.
Oncogenic mutant K-Ras promotes cancer cell proliferation, migration, invasion, and survival by assembling signaling complexes. To date, the functional and structural roles of K-Ras mutations within these complexes are incompletely understood despite their mechanistic and therapeutic significance. Here, we review recent advances in understanding specific binding between K-Ras and the calcium sensor calmodulin. This interaction positively and negatively regulates diverse functions of K-Ras in cancer, suggesting flexibility in K-Ras/calmodulin complex formation. Also, structural data suggest that oncogenic K-Ras likely samples several conformational states, influencing its distinct assemblies with calmodulin and with other proteins. Understanding how K-Ras interacts with calmodulin and with other partners is essential to discovering novel inhibitors of K-Ras in cancer.  相似文献   

6.
The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca(2+) binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca(2+) binding to sites III and IV, and we present a model showing that this could increase Ca(2+) binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ motif (amino acids 39-62), and an adjacent acidic cluster of amino acids (amino acids 28-40). A synthetic peptide spanning residues 28-62 faithfully mimics intact PEP-19 with respect to increasing the rates of Ca(2+) association and dissociation, as well as binding preferentially to the C-domain of CaM. In contrast, a peptide encoding only the core IQ motif does not modulate Ca(2+) binding, and binds to multiple sites on CaM. A peptide that includes only the acidic region does not bind to CaM. These results show that PEP-19 has a novel acidic/IQ CaM regulatory motif in which the IQ sequence provides a targeting function that allows binding of PEP-19 to CaM, whereas the acidic residues modify the nature of this interaction, and are essential for modulating Ca(2+) binding to the C-domain of CaM.  相似文献   

7.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

8.
The C-terminal segment of the loop between transmembrane helices 2 and 3 (A(L) region) of the plasma membrane Ca(2+) pump (PMCA) is not conserved in other P-ATPases. Part of this region, just upstream from the third transmembrane domain, has been associated with activation of the PMCA by acidic lipids. cDNAs coding for mutants of the Ca(2+) pump isoform h4xb with deletions in the A(L) region were constructed, and the proteins were successfully expressed in either COS or Chinese hamster ovary cells. Mutants with deletions in the segment 296-349 had full Ca(2+) transport activity, but deletions involving the segment of amino acids 350-356 were inactive suggesting that these residues are required for a functional PMCA. In the absence of calmodulin the V(max) of mutant d296-349 was similar to that of the recombinant wild type pump, but its K(0.5) for Ca(2+) was about 5-fold lower. The addition of calmodulin increased the V(max) and the apparent Ca(2+) affinity of both the wild type and d296-349 enzymes indicating that the activating effects of calmodulin were not affected by the deletion. At low concentrations of Ca(2+) and in the presence of saturating amounts of calmodulin, the addition of phosphatidic acid increased about 2-fold the activity of the recombinant wild type pump. In contrast, under these conditions phosphatidic acid did not significantly change the activity of mutant d296-349. Taken together these results suggest that (a) deletion of residues 296-349 recreates a form of PMCA similar to that resulting from the binding of acidic lipids at the A(L) region; (b) the A(L) region acts as an acidic lipid-binding inhibitory domain capable of adjusting the Ca(2+) affinity of the PMCA to the lipid composition of the membrane; and (c) the function of the A(L) region is independent of the autoinhibition by the C-terminal calmodulin-binding region.  相似文献   

9.
A fragment of RyR1 (amino acids 4064-4210) is predicted to fold to at least one lobe of calmodulin and to bind Ca(2+). This fragment of RyR1 (R4064-4210) was subcloned, expressed, refolded, and purified. Consistent with the predicted folding pattern, R4064-4210 was found to bind two molecules of Ca(2+) and undergo a structural change upon binding Ca(2+) that exposes hydrophobic amino acids. R4064-4210 also binds to RyR1, the L-type Ca(2+) channel (Cav(1.1)), and several synthetic calmodulin binding peptides. Both R4064-4210 and a peptide representing the calmodulin-binding region of RyR1 (R3614-3643) alter the Ca(2+) dependence of ((3)H)ryanodine binding to RyR1, suggesting that they may both be interfering with an intramolecular interaction between amino acids 4064-4210 and amino acids 3614-3643 in the native RyR1 to alter or regulate the response of the channel to changes in Ca(2+) concentration. The finding that a domain within RyR1 binds Ca(2+) and interacts with calmodulin-binding motifs may provide insights into the mechanism for calcium- and calmodulin-dependent regulation of this channel and perhaps for its regulation by the L-type Ca(2+) channel.  相似文献   

10.
Two fragments of the C-terminal tail of the alpha(1) subunit (CT1, amino acids 1538-1692 and CT2, amino acids 1596-1692) of human cardiac L-type calcium channel (Ca(V)1.2) have been expressed, refolded, and purified. A single Ca(2+)-calmodulin binds to each fragment, and this interaction with Ca(2+)-calmodulin is required for proper folding of the fragment. Ca(2+)-calmodulin, bound to these fragments, is in a more extended conformation than calmodulin bound to a synthetic peptide representing the IQ motif, suggesting that either the conformation of the IQ sequence is different in the context of the longer fragment, or other sequences within CT2 contribute to the binding of calmodulin. NMR amide chemical shift perturbation mapping shows the backbone conformation of calmodulin is nearly identical when bound to CT1 and CT2, suggesting that amino acids 1538-1595 do not contribute to or alter calmodulin binding to amino acids 1596-1692 of Ca(V)1.2. The interaction with CT2 produces the greatest changes in the backbone amides of hydrophobic residues in the N-lobe and hydrophilic residues in the C-lobe of calmodulin and has a greater effect on residues located in Ca(2+) binding loops I and II in the N-lobe relative to loops III and IV in the C-lobe. In conclusion, Ca(2+)-calmodulin assumes a novel conformation when part of a complex with the C-terminal tail of the Ca(V)1.2 alpha(1) subunit that is not duplicated by synthetic peptides corresponding to the putative binding motifs.  相似文献   

11.
K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization.  相似文献   

12.
cDNA expression library screening revealed binding between the membrane distal catalytic domain (D2) of protein-tyrosine phosphatase alpha (PTPalpha) and calmodulin. Characterization using surface plasmon resonance showed that calmodulin bound to PTPalpha-D2 in a Ca(2+)-dependent manner but did not bind to the membrane proximal catalytic domain (D1) of PTPalpha, to the two tandem catalytic domains (D1D2) of PTPalpha, nor to the closely related D2 domain of PTPepsilon. Calmodulin bound to PTPalpha-D2 with high affinity, exhibiting a K(D) approximately 3 nm. The calmodulin-binding site was localized to amino acids 520-538 in the N-terminal region of D2. Site-directed mutagenesis showed that Lys-521 and Asn-534 were required for optimum calmodulin binding and that restoration of these amino acids to the counterpart PTPepsilon sequence could confer calmodulin binding. The overlap of the binding site with the predicted lip of the catalytic cleft of PTPalpha-D2, in conjunction with the observation that calmodulin acts as a competitive inhibitor of D2-catalyzed dephosphorylation (K(i) approximately 340 nm), suggests that binding of calmodulin physically blocks or distorts the catalytic cleft of PTPalpha-D2 to prevent interaction with substrate. When expressed in cells, full-length PTPalpha and PTPalpha lacking only D1, but not full-length PTPepsilon, bound to calmodulin beads in the presence of Ca(2+). Also, PTPalpha was found in association with calmodulin immunoprecipitated from cell lysates. Thus calmodulin does associate with PTPalpha in vivo but not with PTPalpha-D1D2 in vitro, highlighting a potential conformational difference between these forms of the tandem catalytic domains. The above findings suggest that calmodulin is a possible specific modulator of PTPalpha-D2 and, via D2, of PTPalpha.  相似文献   

13.
K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.  相似文献   

14.
Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible.  相似文献   

15.
Regulation of Ca(2+)/H(+) antiporters may be an important function in determining the duration and amplitude of cytosolic Ca(2+) oscillations. Previously the Arabidopsis Ca(2+)/H(+) transporter, CAX1 (cation exchanger 1), was identified by its ability to suppress yeast mutants defective in vacuolar Ca(2+) transport. Recently, a 36-amino acid N-terminal regulatory region on CAX1 has been identified that inhibits CAX1-mediated Ca(2+)/H(+) antiport. Here we show that a synthetic peptide designed against the CAX1 36 amino acids inhibited Ca(2+)/H(+) transport mediated by an N-terminal-truncated CAX1 but did not inhibit Ca(2+) transport by other Ca(2+)/H(+) antiporters. Ca(2+)/H(+) antiport activity measured from vacuolar-enriched membranes of Arabidopsis root was also inhibited by the CAX1 peptide. Through analyzing CAX chimeric constructs the region of interaction of the N-terminal regulatory region was mapped to include 7 amino acids (residues 56-62) within CAX1. The CAX1 N-terminal regulatory region was shown to physically interact with this 7-amino acid region by yeast two-hybrid analysis. Mutagenesis of amino acids within the N-terminal regulatory region implicated several residues as being essential for regulation. These findings describe a unique mode of antiporter autoinhibition and demonstrate the first detailed mechanisms for the regulation of a Ca(2+)/H(+) antiporter from any organism.  相似文献   

16.
K-Ras associates with the plasma membrane (PM) through farnesylation that functions in conjunction with an adjacent polybasic sequence. We show that phosphorylation by protein kinase C (PKC) of S181 within the polybasic region promotes rapid dissociation of K-Ras from the PM and association with intracellular membranes, including the outer membrane of mitochondria where phospho-K-Ras interacts with Bcl-XL. PKC agonists promote apoptosis of cells transformed with oncogenic K-Ras in a S181-dependent manner. K-Ras with a phosphomimetic residue at position 181 induces apoptosis via a pathway that requires Bcl-XL. The PKC agonist bryostatin-1 inhibited the growth in vitro and in vivo of cells transformed with oncogenic K-Ras in a S181-dependent fashion. These data demonstrate that the location and function of K-Ras are regulated directly by PKC and suggest an approach to therapy of K-Ras-dependent tumors with agents that stimulate phosphorylation of S181.  相似文献   

17.
Apocalmodulin and Ca(2+) calmodulin bind to overlapping sites on the ryanodine receptor skeletal form, RYR1, but have opposite functional effects on channel activity. Suramin, a polysulfonated napthylurea, displaces both forms of calmodulin, leading to an inhibition of activity at low Ca(2+) and an enhancement of activity at high Ca(2+). Calmodulin binding motifs on RYR1 are also able to directly interact with the carboxy-terminal tail of the transverse tubule dihydropyridine receptor (DHPR) (Sencer, S., Papineni, R. V., Halling, D. B., Pate, P., Krol, J., Zhang, J. Z., and Hamilton, S. L. (2001) J. Biol. Chem. 276, 38237-38241). Suramin binds directly to a peptide that corresponds to the calmodulin binding site of RYR1 (amino acids 3609-3643) and blocks the interaction of this peptide with both calmodulin and the carboxyl-terminal tail of the DHPR alpha(1)-subunit. Suramin, added to the internal solution of voltage-clamped skeletal myotubes, produces a concentration-dependent increase in the maximal magnitude of voltage-gated Ca(2+) transients without significantly altering L-channel Ca(2+) channel conducting activity. Together, these results suggest that an interaction between the carboxyl-terminal tail of the DHPR alpha(1)-subunit with the calmodulin binding region of RYR1 serves to limit sarcoplasmic reticulum Ca(2+) release during excitation-contraction coupling and that suramin-induced potentiation of voltage-gated Ca(2+) release involves a relief of this inhibitory interaction.  相似文献   

18.
Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.  相似文献   

19.
K-Ras is frequently mutated and activated especially in pancreatic cancers. To analyze K-Ras function, we have searched for K-Ras interacting proteins and found IQ motif containing GTPase activating protein 1 (IQGAP1) as a novel K-Ras binding protein. IQGAP1 has been known as a scaffold protein for B-Raf, MEK1/2 and ERK1/2. Here we showed that IQGAP1 selectively formed a complex with K-Ras but not with H-Ras, and recruited B-Raf to K-Ras. We found that IQ motif region of IQGAP1 interacted with K-Ras. Both active and inactive K-Ras interacted with IQGAP1, and effector domain mutants of K-Ras also associated with IQGAP1, indicating that IQGAP1 interacts with K-Ras irrespective of Ras-effectors like B-Raf. We also found that overexpression or knock-down of IQGAP1 affected the interaction between K-Ras and B-Raf, and IQGAP1 overexpression increased ERK1/2 phosphorylation in K-Ras dependent manner in PANC1 cells. Our data suggest that IQGAP1 has a novel mechanism to modulate K-Ras pathway.  相似文献   

20.
The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale environments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号