首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of mannitol by Lactobacillus intermedius NNRL B-3693 using molasses as an inexpensive carbon source was evaluated. The bacterium produced mannitol (104 g/l) from molasses and fructose syrups (1:1; total sugars, 150 g/l; fructose:glucose 4:1) in 16 h. Several kinds of inexpensive organic and inorganic nitrogen sources and corn steep liquor were evaluated for their potential to replace more expensive nitrogen sources derived from Bacto-peptone and yeast extract. Soy peptone D (5 g/l) and corn steep liquor (50 g/l) were found to be suitable substitutes for Bacto-peptone (5 g/l) and Bacto-yeast extract (5 g/l), respectively. The bacterium produced 105 g mannitol per liter from the molasses and fructose syrup (1:1, total sugars 150 g/l; fructose:glucose 4:1) in 22 h using a combination of soy peptone D (5 g/l) and corn steep liquor (50 g/l). This is the first report on the production of mannitol by fermentation using molasses and corn steep liquor.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

2.
High fructose recovery yields were obtained using sugarcane syrup and C-molasses (equal to blackstrap molasses) and a fructokinase negative mutant ofZymomonas mobilis. The fructose recovery was 95.7% with sugarcane syrup and 99.4% with 300 g/L C-molasses or mixtures of both. High fructose corn syrup of a 48/52 mixture of glucose and fructose gave only a 65–70% fructose recovery due to high sorbitol formation.  相似文献   

3.
Genetically engineered Saccharomyces cerevisiae strains that express Escherichia coli beta-galactosidase gene are able to bioconvert lactose or whey into fructose-1,6-diphosphate (FDP). High FDP yields from whey were obtained with an appropriate ratio between cell concentration and inorganic phosphate. The biomass of transformed cells can be obtained from different carbon sources, according to the expression vector bearing the lacZ gene. We showed that whey can be used as the carbon source for S. cerevisiae growth and as the substrate for bioconversion to fructose diphosphate. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
Levan is a homopolymer of fructose with many outstanding properties like high solubility in oil and water, strong adhesiveness, good biocompatibility, and film-forming ability. However, its industrial use has long been hampered by costly production processes which rely on mesophilic bacteria and plants. Recently, Halomonas sp. AAD6 halophilic bacteria were found to be the only extremophilic species producing levan at high titers in semi-chemical medium containing sucrose, and in this study, pretreated sugar beet molasses and starch molasses were both found to be feasible substitutes for sucrose. Five different pretreatment methods and their combinations were applied to both molasses types. Biomass and levan concentrations reached by the Halomonas sp. AAD6 cells cultivated on 30 g/L of pretreated beet molasses were 6.09 g dry cells/L and 12.4 g/L, respectively. When compared with literature, Halomonas sp. was found to stand out with its exceptionally high levan production yields on available fructose. Molecular characterization and monosaccharide composition studies confirmed levan-type fructan structure of the biopolymers. Rheological properties under different conditions pointed to the typical characteristics of low viscosity and pseudoplastic behaviors of the levan polymers. Moreover, levan polymer produced from molasses showed high biocompatibility and affinity with both cancerous and non-cancerous cell lines.  相似文献   

5.
The purpose of this research was to study the possibility of the production of ethanol and enriched fructose syrups from sugar cane molasses using the yeast Saccharomyces cerevisiae ATCC 36858. In batch experiments with a total sugar concentration of between 96.7 g/l and 323.5 g/l, the fructose yield was above 90% of the theoretical value. The ethanol yield and volumetric productivity were in the range of 66% and 77% of the theoretical value, and between 0.53 g ethanol/l × h and 3.15 g ethanol/l × h, respectively. The fructose fraction in the carbohydrates content of the produced syrups was more than 95% when the total initial sugar concentration in the medium was below 273.8 g/l. Some oligosaccharides and glycerol were also produced in all tested media. The maximum amount of produced oligosaccharides including raffinose accounted for 13.4 g/l in the cane molasses medium with 323.5 g/l sugars in the initial phase of the fermentation process. The oligosaccharides produced and raffinose were completely consumed by the end of the fermentation process when the total initial sugar concentration was less than 191.3 g/l. The glycerol concentration was below 9.9 g/l. These findings are useful in the production of ethanol and high fructose syrups using sugar cane molasses.  相似文献   

6.
Summary One of the methods commonly used for manufacturing fructose 1,6-diphosphate is based on the enzymatic phosphorylation of glucose with inorganic phosphate using permeabilized brewer's yeast cells. Our results demonstrate that a substantial improvement in the yield of bioconversion can be achieved using fed-batch-grown Saccharomyces cerevisiae cells. Under an appropriate glucose and phosphate to cell ratio the efficiency of bioconversion reaches 70% of the theoretical value. Offprint requests to: C. Compagno  相似文献   

7.
Batch culture kinetics of the red yeast, Xanthophyllomyces dendrorhous SKKU 0107, revealed reduction in biomass with glucose and lower intracellular carotenoid content with fructose. Figures were different when compared to sucrose, which is a disaccharide of glucose and fructose. In contrast, specific growth rate constant stayed between 0.094~0.098 h−1, irrespective of the carbon sources employed. Although the uptake rate of glucose was found to be 2.9-fold faster than that of fructose, sucrose was found to be a more suitable carbon source for the production of carotenoids by the studied strain. When sugar cane molasses was used, both the specific growth rate constant and the intracellular carotenoid content decreased by 27 and 17%, respectively. Compared with the batch culture using 28 g/L sugar cane molasses, fed-batch culture with the same strain resulted in a 1.45-fold higher cell yield together with a similar level of carotenoid content in X. dendrorhous SKKU 0107.  相似文献   

8.
Correlations between components of the glycolytic pathway   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The contents of dihydroxyacetone phosphate, fructose diphosphate, pyruvate and lactate and the activities of aldolase and lactate dehydrogenase in the liver, kidney, testis, skeletal muscle, blood cells, sarcoma and hepatoma of rats were measured. 2. Correlations were established between components of the glycolytic pathway as follows: activities of aldolase and lactate dehydrogenase; contents of fructose diphosphate and pyruvate; activity of aldolase and content of fructose diphosphate; activity of lactate dehydrogenase and contents of fructose diphosphate and of pyruvate.  相似文献   

9.
Summary Bacillus polymyxa (NRRL-18475) produced a levan-type fructan (B, 26 fructofuranoside) when grown on sucrose, sugarcane juice, and sugarbeet molasses. The organism converted about 46% of the fructose moiety of sucrose to levan when grown on sucrose medium, however, the yields of levan from sugarcane juice and beet molasses were much less than sucrose solution. Such sugarcane juice and beet molasses can be made a good substrate for levan production by various modifications. Adding peptone to sugarcane juice or passing beet molasses through a column of gel filtration media improved levan yield to a level almost comparable to that obtained from sucrose.  相似文献   

10.
High-density cultures of Pycnoporus cinnabarinus were tested with a view to optimisation of ferulic acid bioconversion into vanillin. The dry weight was increased fourfold by using glucose, fructose or a mixture of glucose and phospholipids as carbon source instead of maltose, the carbon source previously used. 5 mmol l−1 vanillin, i.e. 760 mg l−1, was produced over 15 days with glucose-phospholipid medium. In contrast, formation of vanillin was lower using glucose or fructose compared to the maltose control. A bioreactor (2 l) with a glucose-phospholipid medium gave a molar yield of vanillin of 61% (4 mmol l−1). An alternative strategy was to grow the fungus on a glucose or fructose medium for 3 days, then switch to maltose during the bioconversion phase: this method allowed 3.3 mmol l−1 vanillin to be obtained in 10 days. Many by-products such as methoxyhydroquinone and vanillyl alcohol were also produced. Received: 19 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

11.
Summary Two different quality types of sugar-cane molasses containing a total sugar content of 48%–50% (w/v) and 35%–42% (w/v) were investigated for Zymomonas biothanol production. Molasses concentrations of up to 250 g/l (1:3 dilution) were successfully fermented within 24 h despite a higher salt concentration in the lower grade molasses. Higher molasses concentrations (300 g/l) led to fructose accumulation. The addition of sucrose to a final sugar concentration of 15% (w/v) led to 10% (v/v) ethanol with conversion efficiencies up to 96%. Sorbitol levels were negligible, but increased up to tenfold upon addition of invertase. Offprint requests to: H. W. Doelle  相似文献   

12.
The effect of fed-batch operation (FBO) strategy was investigated using pretreated-beet molasses, containing galactose that induces the lac promoter, on benzaldehyde lyase (BAL) production by recombinant Escherichia coli BL21(DE3)pLySs. After batch cultivation with 30 g l?1 pretreated-beet molasses consisting of 7.5 g l?1 glucose and 7.5 g l?1 fructose, three FBO strategies were applied at dissolved oxygen (=40%) cascade to air-flow rate. In FBO1 when air-flow rate decreased considerably, feed was given to the system in pulses in such a way that pretreated-beet molasses concentration increased by 10 kg m?3 (containing 2.5 g l?1 glucose+2.5 g l?1 fructose); however, decrease in air-flow rate demonstrated only the absence of glucose but not fructose. Thus, in FBO2 when fructose and glucose were completely utilized, pretreated-beet molasses was pulse-fed and its concentration increased by 10 g l?1. In FBO3 with the decreased amount of pretreated-beet molasses (6 g l?1), shift response time from glucose to fructose consumption was avoided, and glucose and fructose consumptions were well correlated with air-flow rate, and the highest C X (8.04 g l?1) and BAL (2,315 U ml?1) production were obtained (t?=?24 h) with the highest substrate yield on cell and product formation.  相似文献   

13.
Corynecins (N-acyl derivatives of d-(?)-threo-p-nitrophenyl serinol), which were firstly discovered in the culture broth of Corynebacterium hydrocarboclastus KY 4339 grown on n-alkane were also produced when n-alkane was replaced by sucrose. The corynecins production in the sucrose-medium was significantly stimulated by the supplement of molasses. On the basis of the composition of ingredients in molasses, the preferable culture medium was designed for the production of corynecins from sucrose. This semi-synthetic medium is consisted of low concentration of phosphate, high concentration of potassium chloride, inositol, fructose and yeast extract in addition to ordinary mineral salts. By controlling the pH of the medium at the neutral range and keeping the aeration at a relatively high level, approximately 4 g of corynecins (as l-base) per liter of the medium were produced using a 5-liter jar fermentor.  相似文献   

14.
A fructose diphosphate aldolase has been isolated from ascarid muscle and crystallized by simple column chromatography and an ammonium sulfate fractionation procedure. It was found to be homogeneous on electrophoresis and Sephadex G-200 gel filtration. This enzyme has a fructose diphosphate/fructose 1-phosphate activity ratio close to 40 and specific activity for fructose diphosphate cleavage close to 11. Km values of ascarid aldolase are 1 × 10−6m and 2 × 10−3m for fructose diphosphate and fructose 1-phosphate, respectively. The enzyme reveals a number of catalytic and molecular properties similar to those found for class I fructose diphosphate aldolases. It has C-terminal functional tyrosine residues, a molecular weight of 155,000, and is inactivated by NaBH4 in presence of substrate. Data show the presence of two types of subunits in ascarid aldolase; the subunits have different electrophoretic mobilities but similar molecular weights of 40,000. Immunological studies indicate that the antibody-binding sites of the molecules of the rabbit muscle aldolase A or rabbit liver aldolase B are structurally different from those of ascarid aldolase. Hybridization studies show the formation of one middle hybrid form from a binary mixture of the subunits of ascarid and rabbit muscle aldolases. Hybridization between rabbit liver aldolase and ascarid aldolase was not observed. The results indicate that ascarid aldolase is structurally more related to the mammalian aldolase A than to the aldolase B.  相似文献   

15.
The aim of the present study was to evaluate the suitability of low-cost carbon sources for bacteriocin production by Leuconostoc mesenteroides strain E131. For this purpose, inexpensive sugars derived from a sugar refinery plant (glucose, fructose and sucrose) as well as waste molasses were utilized as carbon sources in submerged shake-flask experiments and the kinetic response of the microorganism was evaluated. Interestingly, in the case of molasses, non-negligible decolorization-detoxification (up to ~27%) of the residue was performed together with the production of bacteriocin. In all instances the initial concentration of sugars employed was adjusted at 20 and 30 g/L, therefore the effect of both the nature and the initial quantity of sugar upon the growth of the microorganism was assessed. All media proved to be suitable for both biomass and bacteriocin production by L. mesenteroides, whereas variable quantities of lactate, acetate and ethanol were detected into the medium. Employment of fructose, sucrose or molasses as carbon sources resulted in the accumulation of mannitol (in some cases in significant quantities) into the medium; remarkable portion thus of the available or released fructose acted as electron acceptor instead of carbon source by the microorganism. The highest bacteriocin production achieved (=640 AU/mL) was obtained when initial glucose at 30 g/L was used as substrate. Finally, utilization of waste molasses as carbon source by L. mesenteroides resulted in satisfactory bacteriocin production (up to 320 AU/mL) besides the decolorization of the residue.  相似文献   

16.
An aldolase was partially purified from fermenter grownMycobacterium tuberculosis H37Rv cells. The aldolase has a molecular weight of 150,000, possesses a tetrameric structure and cleaves both fructose diphosphate and fructose-1-phosphate, the former being cleaved 17 times faster. The enzyme was inactivated by treatment with NaBH4 in the presence of fructose diphosphate or dihydroxyacetone, phosphate suggesting Schiff base formation during its catalytic function. Thiol reagents, EDTA and metal ions had no apparent effect on the aldolase activity. These results show that aldolase is of Class I type. However, this enzyme, unlike the mammalian Class I aldolase, was unaffected by carboxypeptidase A. N-ethylmaleiniide and dithionitrobenzoic acid.  相似文献   

17.
Fructose diphosphatase of Hydrogenomonas eutropha H 16, produced during autotrophic growth, was purified 247-fold from extracts of cells. The molecular weight of the enzyme was estimated to be 170,000. The enzyme showed a pH optimum of 8.5 in both crude extracts and purified preparation. The shape of the pH curve was not changed in the presence of ethylenediaminetetraacetic acid. The enzyme required Mg2+ for activity. The MgCl2 saturation curve was sigmoidal and the degree of positive cooperativity increased at lower fructose diphosphate concentrations. Mn2+ can replace Mg2+, but maximal activity was lower than that observed with Mg2+ and the optimal concentration range was narrow. The fructose diphosphate curve was also sigmoidal. The purified enzyme also hydrolyzed sedoheptulose diphosphate but at a much lower rate than fructose diphosphate. The enzyme was not inhibited by adenosine 5′-monophosphate but was inhibited by ribulose 5-phosphate and adenosine 5′-triphosphate. Adenosine 5′-triphosphate did not affect the degree of cooperativity among the sites for fructose diphosphate. The inhibition by adenosine 5′-triphosphate was mixed and by ribulose 5-phosphate was noncompetitive. An attempt was made to correlate the properties of fructose diphosphatase from H. eutropha with its physiological role during autotrophic growth.  相似文献   

18.
Aims: To investigate the effects of pretreated‐beet molasses on Escherichia coli fermentation using benzaldehyde lyase (BAL) production by recombinant E. coli BL21(DE3)pLySs process as the model system. Methods and Results: The effect of the initial pretreated (hydrolysed) beet molasses concentration was investigated at 16, 24, 30 and 56 g l?1 at a dissolved oxygen condition of 40% air saturation cascade to airflow, at N = 625 min?1 and pHC = 7·2 controlled‐pH operation conditions. The highest cell concentration and BAL activity were obtained as CX = 5·3 g l?1 and A = 1617 U cm?3, respectively, in the medium containing 30 g l?1 pretreated beet molasses consisting of 7·5 g l?1 glucose and 7·5 g l?1 fructose. Production with and without IPTG (isopropyl‐β‐d ‐thiogalactopyranoside) induction using the medium containing 30 g l?1 of pretreated beet molasses yielded the same amount of BAL production, where the overall cell yield on the substrate was 0·37 g g?1, and the highest oxygen transfer coefficient was KLa = 0·048 s?1. Conclusions: Pretreated beet molasses was used in the fermentation with E. coli for the first time and it yielded higher cell and BAL production compared with the glucose‐based medium. Significance and Impact of the Study: Pretreated beet molasses was found to be a good carbon source for E. coli fermentation. Furthermore, IPTG addition was not required to induce recombinant protein production as galactose, one of the monomers of trisaccharide raffinose present in the beet molasses (1·2%), induced the lac promoter.  相似文献   

19.
Summary The solid-substrate fermentation of wheat straw with an alkaliphilic white-rot fungus (Coprinus sp.) was found to be influenced by the levels of nitrogen, phosphorus+sulphur and free carbohydrates, in terms of biodegradation of straw ingredients, microbial protein production and changes in in-vitro dry matter digestibility (IVDMD). Nitrogen and Phosphorus+Sulphur compounds favoured the bioconversion and their optimum levels were (g/100 g DM): urea (sterile): 1.5, urea (unsterile): 3.0; superphosphate: 1.0. The addition of free carbohydrates as molasses and whey had detrimental effect on biodegradation of lignin as also on organic matter degradation and digestibility. However, the protein production was enhanced in the supplemented straw. The optimized laboratory fermentation was also extended to 4 kg-(sterile and unsterile) and 50 kg-(unsterile) fermentation.  相似文献   

20.
The fungus Mucor indicus is found in this study able to consume glucose and fructose, but not sucrose in fermentation of sugarcane and sugar beet molasses. This might be an advantage in industries which want to selectively remove glucose and fructose for crystallisation of sucrose present in the molasses. On the other hand, the fungus assimilated sucrose after hydrolysis by the enzyme invertase. The fungus efficiently grew on glucose and fructose and produced ethanol in synthetic media or from molasses. The cultivations were carried out aerobically and anaerobically, and manipulated toward filamentous or yeast-like morphology. Ethanol was the major metabolite in all the experiments. The ethanol yield in anaerobic cultivations was between 0.35 and 0.48 g/g sugars consumed, depending on the carbon source and the growth morphology, while a yield of as low as 0.16 g/g was obtained during aerobic cultivation. The yeast-like form of the fungus showed faster ethanol production with an average productivity of 0.90 g/l h from glucose, fructose and inverted sucrose, than the filamentous form with an average productivity of 0.33 g/l h. The biomass of the fungus was also analyzed with respect to alkali-insoluble material (AIM), chitin, and chitosan. The biomass of the fungus contained per g maximum 0.217 g AIM and 0.042 g chitosan in yeast-like cultivation under aerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号