首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The hierarchy of events accompanying induction of apoptosis by the proteasome inhibitor Bortezomib was investigated in Jurkat lymphoblastic and U937 myelomonocytic leukemia cells. Treatment of Jurkat or U937 cells with Bortezomib resulted in activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK (mitogen-activated protein kinase), inactivation of extracellular signal-regulating kinase 1/2 (ERK1/2), cytochrome c release, caspase-9, -3, and -8 activation, and apoptosis. Bortezomib-mediated cytochrome c release and caspase activation were blocked by the pharmacologic JNK inhibitor SP600125, but lethality was not diminished by the p38 MAPK inhibitor SB203580. Inducible expression of a constitutively active MEK1 construct blocked Bortezomib-mediated ERK1/2 inactivation, significantly attenuated Bortezomib lethality, and unexpectedly prevented JNK activation. Conversely, pharmacologic MEK/ERK1/2 inhibition promoted Bortezomib-mediated JNK activation and apoptosis. Lastly, the antioxidant N-acetyl-l-cysteine (LNAC) attenuated Bortezomib-mediated reactive oxygen species (ROS) generation, ERK inactivation, JNK activation, mitochondrial dysfunction, and apoptosis. In contrast, enforced MEK1 and ERK1/2 activation or JNK inhibition did not modify Bortezomib-induced ROS production. Together, these findings suggest that in human leukemia cells, Bortezomib-induced oxidative injury operates at a proximal point in the cell death cascade to antagonize cytoprotective ERK1/2 signaling, promote activation of the stress-related JNK pathway, and to trigger mitochondrial dysfunction, caspase activation, and apoptosis. They also suggest the presence of a feedback loop wherein Bortezomib-mediated ERK1/2 inactivation contributes to JNK activation, thereby amplifying the cell death process.  相似文献   

3.
4.
TNF-alpha transduces signals of survival or death via its two receptors, R1/p55/p60 and RII/p80/p75. The role of caspases as effectors of cell death is universally accepted, although caspase inhibitors may potentiate TNF cytotoxicity in some instances. In conditions when macromolecular synthesis is blocked, caspases are part of the machinery that executes TNF-triggered apoptotic death in U937, a human myelomonocyte cell line, and in the Jurkat T cell line. However, inhibition of p38 mitogen-activated protein kinase (p38 MAPK) triggered TNF cytotoxicity in U937 cells and murine splenic macrophages, but not the Jurkat cell line. TNF induced expression of the antiapoptotic protein c-IAP2 (cytoplasmic inhibitor of apoptosis protein 2), and was blocked in the presence of a p38 MAPK inhibitor, which also induced caspase-dependent, TNF-mediated apoptosis in U937 cells. Thus, inhibition of p38 MAPK resulted in the activation of caspase 9 and cleavage of the adaptor molecule BH3 interacting domain death agonist, and blocked NF-kappaB-mediated transactivation, without affecting the nuclear translocation of NF-kappaB. Collectively, these data show that activation of p38 MAPK is critical to cell survival by TNF in U937 cells, and demonstrate lineage-specific regulation of TNF-triggered signals of activation or apoptosis.  相似文献   

5.
We have investigated the changes in protein kinase C (PKC) activity after treatment of several cell lines with TNF. Binding studies with [3H]phorbol dibutyrate (PBt2) on whole cells revealed rapid and transient activation of PKC in Jurkat, K562, and U937 cells with a maximum of phorbol ester binding at 6 min after TNF treatment. As shown by Scatchard analysis, the TNF-induced increase of [3H]PBt2 binding reflected increments of phorbol ester binding site numbers rather than greater binding affinities. Upon subfractionation of TNF-treated U937 cells a transient increase of PBt2 binding in the membrane fraction was accompanied by a long term loss of PBt2-binding in the cytosol, indicating a TNF-induced translocation of PKC from the cytosol to the cell membrane. With histone III-S as a substrate, the determination of specific PKC activity revealed similar kinetics of PKC translocation in U937 cells. TNF also induced PKC translocation in K562 and Jurkat cells. However, although TNF caused long term down-regulation of cytosolic PKC activity in U937 cells, the cytosolic PKC activity only transiently decreased in both Jurkat and K562 cells and then recovered to near basal levels. In the human nonmalignant fibroblast cell line CCD18, PKC was not activated by TNF. Our data suggest that PKC activation may play a major role in TNF signal transduction in some, but not all target cells.  相似文献   

6.
We studied the expression of the genes encoding the A and B chains of platelet-derived growth factor (PDGF) in a number of human leukemia cell lines. Steady-state expression of the A-chain RNA was seen only in the promonocytic leukemia cell line U937 and in the T-cell leukemia cell line MOLT-4. It has previously been reported that both PDGF A and PDGF B genes are induced during megakaryoblastic differentiation of the K562 erythroleukemia cells and transiently during monocytic differentiation of the promyelocytic leukemia cell line HL-60 and U937 cells. In this study we show that PDGF A RNA expression was induced in HL-60 and Jurkat T-cell leukemia cells and increased in U937 and MOLT-4 cells after a 1- to 2-h stimulation with an 8 pM concentration of transforming growth factor beta (TGF-beta). PDGF A RNA remained at a constant, elevated level for at least 24 h in U937 cells, but returned to undetectable levels within 12 h in HL-60 cells. No PDGF A expression was induced by TGF-beta in K562 cells or in lung carcinoma cells (A549). Interestingly, essentially no PDGF B-chain (c-sis proto-oncogene) RNA was expressed simultaneously with PDGF A. In the presence of TGF-beta and protein synthesis inhibitors, PDGF A RNA was superinduced at least 20-fold in the U937 and HL-60 cells. PDGF A expression was accompanied by secretion of immunoprecipitable PDGF to the culture medium of HL-60 and U937 cells. The phorbol ester tumor promoter tetradecanoyl phorbol acetate also increased PDGF A expression with similar kinetics, but with a mechanism distinct from that of TGF-beta. These results suggest a role for TGF-beta in the differential regulation of expression of the PDGF genes.  相似文献   

7.
A range of N-phenethyl, N-phenacyl, and N-(1- and 2-naphthylmethyl) derivatives of 5,7-dibromoisatin 2 were prepared by N-alkylation reactions. Their activity against human monocyte-like histiocytic lymphoma (U937), leukemia (Jurkat), and breast carcinoma (MDA-MB-231) cell lines was assessed. The results allowed further development of structure-activity relationships. The compound 5,7-dibromo-N-(1-naphthylmethyl)-1H-indole-2,3-dione 5a was the most potent against U937 cells with an IC(50) value of 0.19 microM.  相似文献   

8.
Gao N  Cheng S  Budhraja A  Liu EH  Chen J  Chen D  Yang Z  Luo J  Shi X  Zhang Z 《PloS one》2012,7(2):e31783
3,3'-Diindolylmethane (DIM), one of the active products derived from Brassica plants, is a promising antitumor agent. The present study indicated that DIM significantly induced apoptosis in U937 human leukemia cells in dose- and time-dependent manners. These events were also noted in other human leukemia cells (Jurkat and HL-60) and primary human leukemia cells (AML) but not in normal bone marrow mononuclear cells. We also found that DIM-induced lethality is associated with caspases activation, myeloid cell leukemia-1 (Mcl-1) down-regulation, p21(cip1/waf1) up-regulation, and Akt inactivation accompanied by c-jun NH2-terminal kinase (JNK) activation. Enforced activation of Akt by a constitutively active Akt construct prevented DIM-mediated caspase activation, Mcl-1 down-regulation, JNK activation, and apoptosis. Conversely, DIM lethality was potentiated by the PI3K inhibitor LY294002. Interruption of the JNK pathway by pharmacologic or genetic approaches attenuated DIM-induced caspases activation, Mcl-1 down-regulation, and apoptosis. Lastly, DIM inhibits tumor growth of mouse U937 xenograft, which was related to induction of apoptosis and inactivation of Akt, as well as activation of JNK. Collectively, these findings suggest that DIM induces apoptosis in human leukemia cell lines and primary human leukemia cells, and exhibits antileukemic activity in vivo through Akt inactivation and JNK activation.  相似文献   

9.
The human undifferentiated histiocytic cell-line U937 can be induced to differentiate by incubation with 12-0-tetradecanoylphorbol-13-acetate (TPA) into macrophage-like cells. Dexamethasone reduced the prostaglandin production in TPA-differentiated U937 cells dose dependently, whereas undifferentiated U937 cells were dexamethasone insensitive. Concomitantly phospholipase A2, the enzyme liberating the prostaglandin precursor arachidonic acid, was inhibited by dexamethasone in TPA-differentiated but not in undifferentiated U937 cells. The activity of lysophosphatide acyltransferase, the key enzyme of fatty acid reacylation into phospholipids, remained unchanged both in undifferentiated and TPA-differentiated U937 cells. The data suggest that responsiveness to glucocorticoid-dependent regulation of prostanoid synthesis is acquired by cells of the monocyte-macrophage lineage late in differentiation.  相似文献   

10.
The functional significance of the cyclin-dependent kinase inhibitor (CDKI) p21Cip1/WAF1 in paclitaxel-mediated lethality was examined in p53-null human leukemia cells (U937 and Jurkat). In these cells, paclitaxel exposure failed to induce p21Cip1/Waf1 expression. Nevertheless, stable expression of U937 cells with a p21Cip1/WAF1 antisense construct blocked paclitaxel-induced G2M arrest and significantly, albeit modestly, increased mitochondrial injury, caspase activation, apoptosis, and loss of clonogenic potential. These protective effects were less than those observed in cells exposed to the antimetabolite ara-C. Consistent with these results, enforced expression of p21Cip1/WAF1 in Jurkat cells transfected with a construct driven by a doxycycline-responsive promoter increased the percentage of cells arrested in G2M, but attenuated paclitaxel-mediated mitochondrial injury and apoptosis. Unexpectedly, enforced expression of p21Cip1/WAF1 diminished paclitaxel-mediated inactivation of ERK, and reduced paclitaxel-induced activation of JNK as well as Bcl-2 phosphorylation. Together, these findings suggest that the CDKI p21Cip1/WAF1 modestly but significantly protects p53-null human leukemia cells from paclitaxel-mediated lethality, and raise the possibility that p21Cip1/WAF1-associated perturbations in signal transduction pathways as well as Bcl-2 phosphorylation status may play a role in this phenomenon.  相似文献   

11.
The human histiocyte cell line, U937, with monocyte characteristics, can be induced to differentiate into macrophage-like cells when exposed to growth medium containing 1.5% DMSO. Following three days of exposure, DMSO-treated but not control U937 cells can be stimulated to release endogenous arachidonic acid from their phospholipids. Maximum release of the unsaturated fatty acid occurs with 10 microM calcium ionophore in the presence but not in the absence of exogenously added calcium ion. In addition, DMSO-treated but not control U937 cells exhibit phospholipase activity when exposed to human IgG and then anti-human immunoglobulin. These data suggest that with respect to arachidonic acid metabolism U937 cells differentiate into functional macrophage-like cells when exposed to DMSO.  相似文献   

12.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   

13.
U937 human monoblast cells incubated with leukotriene D4 (LTD4) rapidly released arachidonic acid metabolites into the culture medium. Release was suppressed by the high-affinity LTD4 receptor antagonist SK&F 104353. Arachidonic acid release induced by LTD4 has been linked to a rapid induction of gene expression, and the propagation of the receptor binding signal is probably associated with enzymes that regulate gene expression. We have studied the participation of DNA topoisomerase I in LTD4 signal transduction. LTD4-specific release of arachidonic acid metabolites was inhibited (60-80%) by the topoisomerase I inhibitor camptothecin. LTD4 increased protein-linked DNA strand breakage induced by camptothecin in U937 cells; this enhancement was prevented by coincubation of the cells with LTD4 plus the receptor antagonist SK&F 104353. In addition, LTD4 produced a rapid transient increase in extractable topoisomerase I activity, which was maximum within the first 10 min after addition of LTD4 to the culture medium. Incubation of cultures for greater than 10 min with LTD4 before the addition of camptothecin resulted in no enhancement of camptothecin-induced DNA strand breakage, consistent with a reversal of topoisomerase I activation. Staurosporine, an inhibitor of protein kinase C, blocked LTD4-induced arachidonic acid release and attenuated the effect of LTD4 on camptothecin-induced DNA strand breakage. These results are consistent with the view that the regulation of topoisomerase I activity is involved in the propagation of LTD4-mediated signals in U937 cells.  相似文献   

14.
Previous studies performed in our laboratory indicated that non-toxic concentrations of peroxynitrite nevertheless commit U937 cells to a rapid necrosis that is however prevented by a survival signaling driven by cytosolic phospholipase A(2)-released arachidonic acid. Toxicity was mediated by concentrations of peroxynitrite resulting in H(2)O(2)-dependent inhibition of arachidonic acid release. The present study shows that U937 cells differentiated to monocytes by prolonged exposure to dimethyl sulfoxide are resistant to peroxynitrite because able to respond with enhanced release of arachidonic acid. An additional important observation was that these cells require more arachidonate than the undifferentiated cells to support the survival signaling. The enhanced arachidonic acid release was not associated with changes in cytosolic phospholipase A(2) expression but was rather dependent on the increased responsiveness of the enzyme to calcium-dependent stimulation as well as on reduced mitochondrial formation of H(2)O(2). The latter event was found to be critical, since differentiated and undifferentiated cells were equally sensitive to peroxynitrite when the accumulation of H(2)O(2) was enhanced via depletion of catalase, or addition of a complex III inhibitor. Thus, the strategy selected by the differentiation process to allow monocytes to cope with peroxynitrite appears to involve some specific mechanism preventing the mitochondrial formation of H(2)O(2).  相似文献   

15.
Effects of phenethyl isothiocyanate (PEITC) have been investigated in human leukemia cells (U937, Jurkat, and HL-60) as well as in primary human acute myeloid leukemia (AML) cells in relation to apoptosis and cell signaling events. Exposure of cells to PEITC resulted in pronounced increase in the activation of caspase-3, -8, -9, cleavage/degradation of PARP, and apoptosis in dose- and time-dependent manners. These events were accompanied by the caspase-independent downregulation of Mcl-1, inactivation of Akt, as well as activation of Jun N-terminal kinase (JNK). Inhibition of PI3K/Akt by LY294002 significantly enhanced PEITC-induced apoptosis. Conversely, enforced activation of Akt by a constitutively active Akt construct markedly abrogated PEITC-mediated JNK activation, Mcl-1 downregulation, caspase activation, and apoptosis, and also interruption of the JNK pathway by pharmacological or genetically (e.g., siRNA) attenuated PEITC-induced apoptosis. Finally, administration of PEITC markedly inhibited tumor growth and induced apoptosis in U937 xenograft model in association with inactivation of Akt, activation of JNK, as well as downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Akt/JNK/Mcl-1 pathway potentiate PEITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of U937 xenograft model.  相似文献   

16.
17.
The thrombin peptide, TP508, accelerates tissue repair and initiates a cascade of cellular events. We have previously shown that alpha-thrombin induces cytokine expression in human mononuclear cells. We, therefore, investigated the possibility that TP508 might activate cytokine production and intracellular signaling pathways associated with cytokine activation. Our results show that TP508 induces cytokine expression in human mononuclear cells. TP508 treatment enhances extracellular signal-regulated kinase (Erk1/2) activities in U937 cells, as well as Erk1/2 and p38 activation in Jurkat T cells. These data support the hypothesis that TP508 may accelerate tissue repair through the activation of the inflammatory response.  相似文献   

18.
Bcl-2 protects tumor cells from the apoptotic effects of various antineoplastic agents. Increased expression of Bcl-2 has been associated with poor response to chemotherapy in various malignancies, including leukemia. Therefore, bypassing the resistance conferred by anti-apoptotic factors such as Bcl-2 represents an attractive therapeutic strategy against cancer cells, including leukemic cells. We undertook this study to examine whether SAHA (suberoylanilide hydroxamic acid) overcomes the resistance by Bcl-2 in human leukemic cells, with a specific focus on the involvement of PML-NBs. Experiments were conducted with Bcl-2-overexpressing human leukemic U937 cells. Since we previously demonstrated that overexpression of Bcl-2 attenuates resveratrol-induced apoptosis in human leukemic U937 cells, resveratrol-treated U937 cells were used as a negative control. The present study indicates that SAHA at 1-7 μM, the dose range known to induce apoptosis in various cancer cells, overcomes the anti-apoptotic effects of Bcl-2 in Bcl-2-overexpressing human leukemic U937 cells. Notably, we observed that SAHA-induced formation of mature promyelocytic leukemia (PML) nuclear bodies (NBs) correlates with overcoming the anti-apoptotic effects of Bcl-2 in human leukemic U937 cells. Thus, PML protein and the formation of mature PML-NBs could be considered as therapeutic targets that could help bypass the resistance to apoptosis conferred by Bcl-2. Elucidating exactly how PML regulates Bcl-2 will require further work.  相似文献   

19.
The effects of several cytokines and phorbol myristate acetate (PMA) on LFA-1 and ICAM-1 expression on a human eosinophilic leukemia cell line, EoL-3, were investigated and compared with those of a human monocytic leukemia cell line, U937. EoL-3 cells expressed large amounts of LFA-1 and small amounts of ICAM-1, and their expression was regulated similarly in EoL-3 cells and U937 cells. Interferon-gamma (IFN-gamma) enhanced ICAM-1 expression but not LFA-1 expression, and PMA augmented both LFA-1 and ICAM-1 expression. IFN-gamma and PMA showed an additive effect on ICAM-1 expression. These results collectively suggest that expression of LFA-1 and ICAM-1 is regulated differently and that IFN-gamma and PMA regulate the expression through different mechanisms. PMA but not IFN-gamma induced homotypic adhesion of EoL-3 and U937 cells, suggesting that PMA but not IFN-gamma activated the adhesive function of these cells. Staurosporin, an inhibitor of protein kinases (PKs), partly suppressed IFN-gamma- and PMA-augmented expression of ICAM-1 on EoL-3 and U937 cells, but did not affect PMA-augmented LFA-1 expression, suggesting that staurosporin-sensitive PKs are involved in IFN-gamma- and PMA-augmented ICAM-1 expression but not in PMA-augmented LFA-1 expression. The role of protein kinase C (PK-C) in these mechanisms was not revealed because a PK-C inhibitor, H-7, did not show any definitive effect on IFN-gamma- and PMA-induced expression of LFA-1 and ICAM-1. Moreover, cyclic AMP (cAMP)- and cGMP-dependent pathways were not shown to be involved in the augmentation of the expression of these molecules.  相似文献   

20.
U937 human myeloid leukemia cells are induced to apoptosis by tumour necrosis factor (TNF) plus cycloheximide (CHX). We have analysed the effect of various inhibitors of the arachidonic acid (AA) metabolism on several features of this process. The formation of high molecular weight and oligonucleosomal DNA fragments as well as nuclear fragmentation were reduced by inhibitors of 5-lipoxygenase (BWA4C and BWB70C), 5-LO activating protein (MK-886), and cytosolic PLA2 (AACOCF3). None of these agents blocked the morphological changes detected by microscopy or flow cytometry, phosphatidylserine exposure on the cell surface or Caspase 3-like activation. AA also induced nuclear fragmentation at a concentration of 1-20 microM. However, the mechanisms by which these inhibitors act, remain unexplained since there was no 5-LO expression in the U937 cells and no AA release followed their stimulation with TNF plus CHX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号