首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous studies have demonstrated enhanced phosphorylation of phospholipase C-tau (PLC-tau), a key regulatory enzyme in phosphoinositide metabolism, in cells treated with platelet-derived growth factor (PDGF) and epidermal growth factor, both of which act via specific receptor tyrosine kinases. Our studies on BALB/c-3T3 cells show that agents that promote cellular cyclic AMP accumulation also increase the phosphorylation, specifically the serine phosphorylation, of this enzyme. Increased phosphorylation of PLC-t (2-3-fold) was evident within 5-10 min of addition of isobutylmethylxanthine (IBMX) and either cholera toxin or forskolin to cells, and persisted for at least 3 h. Treatment of cells with cyclic AMP agonists also enhanced, with similar kinetics, the phosphorylation of a 76 kDa protein co-precipitated by anti-PLC-tau monoclonal antibodies. Brief exposure of cells to cholera toxin/IBMX or forskolin/IBMX decreased inositol phosphate formation induced by the GTP-binding protein (G-protein) activator aluminium fluoride by approx. 50%, but was without effect on PDGF-stimulated inositol phosphate formation. These findings suggest that PLC-tau, and perhaps the 76 kDa co-precipitated protein, are substrates of cyclic AMP-dependent protein kinase in BALB/c-3T3 cells: however, the lack of effect of cyclic AMP elevation on PDGF-stimulated inositol phosphate formation indicates that the intrinsic activity of PLC-tau is unaltered by cyclic AMP-mediated phosphorylation.  相似文献   

2.
The effects of epidermal growth factor (EGF) on the metabolism of phosphatidylinositol were examined using A431 cells labeled with either 32PO3(4)- or myo-[3H] inositol. EGF was found to increase the incorporation of phosphate into phosphatidic acid, phosphatidylinositol 4-monophosphate, and phosphatidylinositol 4,5-diphosphate as early as 15 s after addition of hormone. These changes were found to be due to two effects of EGF on the phosphatidylinositol cycle. First, EGF stimulated the breakdown of phosphatidylinositol 4,5-diphosphate to diacylglycerol and an inositol triphosphate. In addition, EGF induced a rise in the levels of phosphatidylinositol 4-monophosphate. The EGF-dependent increases in both inositol triphosphate production and phosphatidylinositol 4-monophosphate levels were inhibited by pretreatment of the cells with 12-O-tetradecanoylphorbol-13-acetate. Treatment of the cells with pertussis toxin did not inhibit either of these responses. However, treatment of the cells with cholera toxin selectively abolished the ability of EGF to stimulate the rise in phosphatidylinositol monophosphate levels but did not alter the ability of the hormone to induce the breakdown of phosphatidylinositol diphosphate. The effects of cholera toxin were not mimicked by forskolin, cAMP analogs, or isobutyl-methylxanthine. These data demonstrate that EGF stimulates the production of inositol triphosphate. In addition, the findings are consistent with the hypothesis that EGF independently stimulates a phosphatidylinositol kinase. Based on the effects of cholera toxin and the inability of cyclic nucleotides to mimic this response, the effect of EGF on the phosphatidylinositol kinase may be mediated via a guanine nucleotide-binding protein that is not involved in cAMP production.  相似文献   

3.
Cholera toxin pretreatment has been found to cause a 3-fold increase in the initial rate of antigen-stimulated secretion of serotonin from rat basophilic leukemia (RBL) cells. Under similar conditions, cholera toxin enhances the antigen-stimulated rise in cytoplasmic free ionized calcium levels and causes a 2-3-fold increase in the rate of antigen-stimulated influx of 45Ca. In intact RBL cells cholera toxin pretreatment potentiates the antigen-stimulated production of inositol phosphates, but in permeabilized cells, with strongly buffered free calcium levels, no effect of cholera toxin pretreatment on the antigen-stimulated activation of cellular phospholipase activities is observed. In addition, pretreatment of cells with tetradecanoylphorbol acetate inhibits antigen-stimulated production of inositol phosphates by greater than 95%, while the stimulated influx of 45Ca remains unaffected. These data indicate that the antigen-stimulated influx of calcium into RBL cells can be dissociated from the production of inositol phosphates in these cells. The observed effects of cholera toxin on exocytosis and Ca2+ influx in RBL cells are not due to the elevation of cellular cyclic AMP levels since a variety of agents capable of elevating cellular cyclic AMP levels do not mimic these effects. Together, these data suggest that a cholera toxin-sensitive guanine nucleotide-binding protein is involved in the pathway responsible for the antigen-stimulated influx of calcium into RBL cells.  相似文献   

4.
The stimulation of DNA synthesis in quiescent, density-arrested BALB/c-3T3 cells by platelet-derived growth factor in plasma-supplemented medium was inhibited by the presence of isobutylmethylxanthine (IBMX) and cholera toxin, although neither IBMX or cholera toxin when used alone inhibited the stimulation of DNA synthesis. The cells were reversibly inhibited in mid G1 at a point 6 hr prior to the initiation of DNA synthesis. The inhibition of cell cycle traverse was associated with a 10-15 fold increase in cellular cyclic AMP concentration over basal levels. The reversal of this inhibition by removal of IBMX was correlated with a dramatic decrease in cyclic AMP levels. The traverse of G1 and the initiation of DNA synthesis after release from the cholera toxin and IBMX inhibition was dependent on the presence of plasma in the medium. Either somatomedin C (10-20 ng/ml) or insulin (10(-6)-10(-5) M) completely replaced the plasma requirement for late G1 progression and entry into S phase. Once the inhibited cells were released from the IBMX and cholera toxin block a subsequent increase in cyclic AMP did not prevent entry into S phase. The presence of cholera toxin alone inhibited the stimulation of human dermal fibroblasts. The elevation of intracellular cyclic AMP levels in the human dermal fibroblasts by cholera toxin was two to three fold greater than that found in the BALB/c-3T3 cells in the presence of cholera toxin and the IBMX.  相似文献   

5.
Infection of cultured endothelial cells with Trypanosoma cruzi alters intracellular Ca2+ homeostasis. To help understand the biochemical basis for this phenomenon, we determined the influence of infection on inositol phosphate formation in a broken cell preparation. Inositol phosphates participate in the regulation of cytosolic Ca2+. In uninfected endothelial cells, bradykinin guanosine 5'-O-thiophosphate (GTP tau S), and calcium all stimulated inositol phosphate (IP1), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) formation within 5 sec of incubation. At longer periods of incubation with GTP tau S and bradykinin, formation of IP1 was linear for 30 sec, whereas the rate of IP2 and IP3 generation was maximal at 20 and 5 sec, respectively. Second, infection markedly changed these aspects of inositol phosphate generation. First, unstimulated (basal) levels of IP1 and IP3 were markedly increased over those levels in membranes of uninfected cells. Infection decreased the rate of formation for the three inositol phosphates in response to GTP tau S and bradykinin. Finally, infection diminished the magnitude of inositol phosphate synthesis in response to Ca2+ for IP1, IP2, and IP3, respectively. Studies on G proteins using cholera and pertussis toxin were carried out to determine if the infection-associated changes in inositol phosphate generation could be attributed to functional changes in these regulatory proteins known to participate in the activation of phospholipase C. Infection markedly decreased the magnitude of cholera and pertussis toxin-dependent ADP ribosylation, as compared to control uninfected cells. Incubation of uninfected endothelial cells with cholera and pertussis toxin also decreased the magnitude of cholera and pertussis toxin ADP ribosylation. Despite the similar effects of infection and toxin treatment on subsequent toxin-catalyzed ADP ribosylation, toxin treatment did not influence inositol phosphate generation. Collectively, these results demonstrate an influence of infection on receptor-dependent and -independent synthesis of inositol phosphates, possibly by an action on phospholipase C. The results help to explain the apparent infection-associated increase in basal Ca2+ previously observed and suggest that interference with signal transduction may be a consequence of the presence of the parasite.  相似文献   

6.
Recent studies have implicated that a GTP-binding protein (G-protein) is involved in the coupling of both CCK-8 and muscarinic cholinergic receptors to phosphoinositidase C (PIC) in the human embryonic pituitary cell line, Flow 9000. Pretreatment of these cells with cholera toxin, but not pertussis toxin, inhibited the stimulation of [3H]inositol phosphate production by CCK-8 and acetylcholine. These inhibitory effects of cholera toxin could not be reproduced by treating the cells with the B-subunit of cholera toxin or cAMP-generating agents such as forskolin. These data suggest the presence of a novel Gc protein which is responsible for receptor-PIC coupling in Flow 9000 cells.  相似文献   

7.
Cyclic AMP increased 8- to 10-fold after a 3-h treatment with 6 nM cholera toxin in rat C6-2B astrocytoma cells. In the presence of cycloheximide, cholera toxin increased intracellular cyclic AMP about 50-fold. Qualitatively similar potentiation of cholera toxin action by cycloheximide was observed in isolated swine aortic vascular smooth muscle cells. Cycloheximide, by itself, had no effect upon cyclic AMP levels and did not alter the apparent Ka for cyclic AMP generation by cholera toxin in the cells. Also, cycloheximide did not appear to augment cholera toxin action via inhibition of cyclic nucleotide phosphodiesterase. Puromycin and actinomycin D also augmented cholera toxin action in C6-2B cells. Potentiation of cholera toxin-increased cyclic AMP formation by cycloheximide was correlated with the inhibition of [14C]leucine incorporation into protein. These results indicate that the ability of cholera toxin to stimulate cyclic AMP production in C6-2B astrocytoma and swine vascular smooth muscle cells is enhanced by inhibition of de novo protein synthesis.  相似文献   

8.
Addition of tumor promoting phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), to many cell lines results in a decrease of 125I-epidermal growth factor (EGF) binding and increased serine/threonine phosphorylation of the EGF receptor in a process termed transmodulation. It is, however, unclear whether or not receptor phosphorylation is causally related to the inhibition of high affinity EGF binding. We have investigated the significance of phosphorylation/dephosphorylation events in the mechanism of PMA-induced transmodulation using the adenylate cyclase activator cholera toxin and the serine/threonine protein phosphatase inhibitor okadaic acid. In Rat-1 fibroblasts treated at 37 degrees C, PMA induced a rapid decrease in EGF binding which persisted for 3 hours. In contrast, cells exposed to PMA in the presence of cholera toxin exhibited a marked recovery of binding within 60 minutes. The PMA-stimulated decrease in binding correlated with a rapid increase in the phosphorylation state of the EGF receptor. While phosphorylation of the receptor was sustained at an elevated level for at least three hours in cells receiving PMA alone, EGF receptor phosphorylation decreased between 1 and 3 hours in cells treated with PMA and cholera toxin. Furthermore, the cholera toxin-stimulated return of EGF binding was inhibited by treatment with the phosphatase inhibitor okadaic acid. These results suggest that a cholera toxin-activated phosphatase can increase binding capacity of the transmodulated EGF receptor in Rat-1 cells. Cholera toxin treatment elicited a qualitatively similar response in cells transmodulated by platelet-derived growth factor (PDGF). Okadaic acid antagonized the natural return of binding observed in cells stimulated with PDGF alone, indicating that a dephosphorylation event may be required for the recovery of normal EGF binding after receptor transmodulation.  相似文献   

9.
Incubation of L6 skeletal myoblasts for 16 h with cholera toxin but not with pertussis toxin, led to the inhibition of inositol phosphate generation induced by subsequent exposure to vasopressin. The effects of the toxin on inositol lipid metabolism were accompanied by the total ADP-ribosylation of the available cholera-toxin substrates within the cells. Immunological analysis demonstrated that the two polypeptides modified in vivo by cholera toxin were different forms of Gs alpha (alpha subunit of Gs). No novel cholera-toxin substrate(s) were detected. The cholera-toxin-mediated inhibition of vasopressin-stimulated inositol phosphate generation could be mimicked by both forskolin and dibutyryl cyclic AMP, but not by the separated subunits of the toxin. Receptor-binding studies demonstrated that the inhibition of agonist-stimulated inositol phosphate generation was accompanied by a decrease in cell-surface vasopressin-binding sites, with no effect on the affinity of these for the hormone. We suggest that the effect of cholera toxin and agents which increase intracellular cyclic AMP on vasopressin-stimulated inositol lipid hydrolysis is an effect on receptor number, and that there is no requirement to postulate a role for a novel G-protein, which is a substrate for cholera toxin, in the regulation of inositol phospholipid metabolism.  相似文献   

10.
Pasteurella multocida toxin, both native and recombinant, is an extremely potent mitogen for Swiss 3T3 cells and acts to enhance the formation of total inositol phosphates (Rozengurt, E., Higgins, T., Changer, N., Lax, A.J., and Staddon, J.M. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 123-127). P. multocida toxin also stimulates diacylglycerol production and activates protein kinase C (Staddon, J.M., Chanter, N., Lax, A.J., Higgins, T.E., and Rozengurt, E. (1990) J. Biol. Chem. 265, 11841-11848). Here we analyze, by [3H]inositol labeling and high performance liquid chromatography, the inositol phosphates in recombinant P. multocida toxin-treated cells. Recombinant P. multocida toxin stimulated increases in [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and its metabolic products, including Ins(1,3,4,5)P4, Ins(1,3,4)P3, Ins(1,4)P2, Ins(4/5)P, and Ins(1/3)P. The profile of the increase in the cellular content of these distinct inositol phosphates was very similar to that elicited by bombesin. Furthermore, recombinant P. multocida toxin, like bombesin, mobilizes an intracellular pool of Ca2+. Recombinant P. multocida toxin pretreatment greatly reduces the Ca2(+)-mobilizing action of bombesin, consistent with Ca2+ mobilization from a common pool by the two agents. The enhancement of inositol phosphates and mobilization of Ca2+ by recombinant P. multocida toxin were blocked by the lysosomotrophic agents methylamine, ammonium chloride, and chloroquine and occurred after a dose-dependent lag period. The stimulation of inositol phosphate production by recombinant P. multocida toxin persisted after removal of extracellular toxin, in contrast to the reversibility of the action of bombesin. Recombinant P. multocida toxin, unlike bombesin and guanosine 5'-O-(gamma-thiotriphosphate), did not cause the release of inositol phosphates in permeabilized cells. These data demonstrate that recombinant P. multocida toxin, acting intracellularly, stimulates the phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate.  相似文献   

11.
12.
The differential sensitivity of various cell lines to the mitogenic effects of epidermal growth factor (EGF) was investigated. Two lines of evidence suggest that cellular capacity to respond proliferatively to EGF is related to intracellular cyclic AMP concentration. First, the ability of three density-arrested cell lines to synthesize DNA in response to EGF was directly proportional to the basal cyclic AMP level of the cells at quiescence. Second, treatment of cultures with various agents known to promote intracellular cyclic AMP accumulation increased the sensitivity of all three cell lines to EGF. The mechanism whereby cyclic AMP modulates EGF responsiveness is not known; cholera toxin did not affect the cellular capacity to bind or internalize and process EGF. Although platelet-derived growth factor (PDGF) had no effect on cyclic AMP levels, transient treatment of quiescent cultures with this polypeptide also enhanced EGF sensitivity. In agreement with previous data and in contrast to cholera toxin, PDGF induced the down-regulation of EGF receptors in the three cell lines. These data suggest that the capacity of various cell types to respond to EGF is subject to both intracellular regulation by cyclic AMP and extracellular modulation by factors such as PDGF which can affect EGF receptor activity.  相似文献   

13.
Cholera toxin was used in an attempt to inhibit epidermal growth factor stimulated 3T3 cell division. Instead, cholera toxin alone at low concentrations (10(-10) M), was able to stimulate cell division and could augment EGF stimulated cell division. The mitogenic effect of cholera toxin can occur despite a dramatic increase in the intracellular levels of cAMP in 3T3 cells. Cholera toxin stimulated mitogenesis could not be mimicked by choleragenoid, the binding but inactive subunit of cholera toxin, or by other agents which elevate cAMP levels in 3T3 cells.  相似文献   

14.
Addition of vasopressin (100 nM) to rat hepatocytes prelabelled with [3H]inositol stimulated the production of inositol phosphates in the presence of 20 mM Li+. Preincubation of hepatocytes with insulin (50 nM) or glucagon (10 nM) had no significant effect alone but enhanced the effects of vasopressin after a lag period of at least 1 min. The effects of insulin and glucagon appeared additive in this respect. Insulin also enhanced the norepinephrine-mediated stimulation of inositol phosphate accumulation. The enhancement by insulin of the effects of vasopressin required at least 0.5-5 nM insulin and did not involve changes in [3H]inositol lipid labelling or IP3 phosphatase activity. The effect of insulin appeared insensitive to prior treatment of hepatocytes with pertussis toxin (200 ng/ml for 18-24 h) or cholera toxin (100 ng/ml for 3-4 h). The glucagon enhancement of the effects of vasopressin was not affected by pertussis toxin but was mimicked by cholera toxin. The response of hepatocytes to vasopressin in the absence of Li+ was smaller and more transient. Under these conditions a 5 min prior incubation with insulin inhibited the stimulation by vasopressin of inositol phosphate accumulation. A similar inhibitory effect of prior insulin exposure on the transient activation by vasopressin of exogenous phosphatidylinositol 4,5-bisphosphate breakdown by hepatocyte homogenates was also seen. These data indicate that insulin, although having no effect on basal inositol phosphate accumulation, can either enhance or antagonise the effects of vasopressin in primary rat liver hepatocyte cultures depending on the experimental conditions.  相似文献   

15.
Stimulation of total inositol phosphate production, alteration of cytosolic free calcium [( Ca++]i), vinculin disruption from adhesion plaques, and DNA synthesis caused by PDGF were examined in normal and INF pretreated density arrested BALB/c-3T3 fibroblasts. In normal cells, PDGF caused an increase in total inositol phosphates, a rapid, transient increase in [Ca++]i, disappearance of vinculin from adhesion plaques, and stimulation of DNA synthesis. Pretreatment of cells with INF inhibited PDGF-stimulated increases in [Ca++]i, vinculin disruption from adhesion plaques, and DNA synthesis, but had no effect on PDGF-induced increase in total inositol phosphate levels. These findings suggest that INF prevents entry of quiescent BALB/c-3T3 cells into G1 by inhibiting PDGF-induced release of Ca++ from intracellular stores.  相似文献   

16.
Platelet-derived growth factor (PDGF) increases the mitogenic activity of epidermal growth factor (EGF) in several cells lines, including BALB/C-3T3. PDGF-treated BALB/C-3T3 cells manifest a reduced capacity to bind 125I-labeled EGF due to a loss of high affinity EGF receptors. Cholera toxin potentiates the ability of PDGF to both decrease EGF binding and initiate mitogenesis. Whether PDGF increases EGF sensitivity via its effects on EGF receptors is not known and requires a more complete understanding of the mechanism by which PDGF decreases EGF binding. 12-O-tetradecanoylphorbol 13-acetate (TPA) also reduces EGF binding in BALB/C-3T3 and other cells, presumably by activating protein kinase C and, consequently, inducing the phosphorylation of EGF receptors at threonine-654. PDGF indirectly activates protein kinase C, and EGF receptors in PDGF-treated WI-38 cells are phosphorylated at threonine-654. Thus, the effects of PDGF on EGF binding may also be mediated by protein kinase C. We investigated this hypothesis by comparing the actions of PDGF and TPA on EGF binding in density-arrested BALB/C-3T3 cells. Both PDGF and TPA caused a rapid, transient, cycloheximide-independent loss of 125I-EGF binding capacity. The actions of both agents were potentiated by cholera toxin. However, whereas TPA allowed EGF binding to recover, PDGF induced a secondary and cycloheximide-dependent loss of binding capacity. Most importantly, PDGF effectively reduced binding in cells refractory to TPA and devoid of detectable protein kinase C activity. These findings indicate that PDGF decreases EGF binding by a mechanism that involves protein synthesis and is distinct from that of TPA.  相似文献   

17.
Preincubation of Fura 2-loaded rat myometrial cells with H-8, an inhibitor of protein kinase A, for 1 h reversed the inhibitory effects of 8-(4-chlorophenylthio)-cAMP (CPTcAMP) on the oxytocin-stimulated increase in (Ca2+)i (intracellular free calcium), with an EC50 of 47 microM. H-8 also prevented the inhibition by relaxin and isoproterenol of the oxytocin-induced increase in (Ca2+)i. The EC50 of H-8 in reversing the relaxin effect was 42 microM. H-8 reversal of the effect of relaxin on (Ca2+)i was evident both in the absence of extracellular calcium and in cells pretreated with pertussis toxin. H-8 also reversed the inhibitory effects of relaxin and CPTcAMP on the oxytocin-induced increase in [3H]inositol phosphate formation and [3H]phosphoinositide hydrolysis. Preincubation of myometrial cells for 1 h with H-7, another protein kinase inhibitor, only partially attenuated the inhibition by relaxin and CPTcAMP of the oxytocin-induced increase in (Ca2+)i and [3H]inositol phosphate formation at concentrations 4-5 times greater than those of H-8. Acute (15-min) exposure to phorbol myristate acetate (1.0 microM) did not affect basal (Ca2+)i or the oxytocin-stimulated increases in (Ca2+)i or inositol phosphate formation. These results imply a regulatory role for protein kinase A in the inhibition of the oxytocin-induced increase in (Ca2+)i and inositol phosphate formation by relaxants.  相似文献   

18.
NIH-3T3 cells transformed by the EJ-ras oncogene display reduced platelet-derived growth factor (PDGF)-stimulated phospholipase C activity as measured by inositol 1,4,5-triphosphate (IP3) synthesis and Ca2+ mobilization. The lack of PDGF-stimulated Ca2+ mobilization in EJ-ras transformed cells is not due to a loss of IP3 sensitivity, because microinjected IP3 elevates intracellular Ca2+. Treatment of EJ-ras transformed cells with cholera toxin or 8-bromo-cyclic AMP, but not pertussis toxin or the beta-subunit of cholera toxin, results in a slight recovery of PDGF-stimulated IP3 synthesis, a marked increase in intracellular Ca2+ mobilization, and an almost complete recovery of prostaglandin E2 biosynthesis. These data suggest that EJ p21-mediated inhibition of PDGF-stimulated intracellular events can be partially and transiently reversed by cyclic AMP.  相似文献   

19.
The accumulation of inositol phosphates in WRK 1 cells, stimulated with a range of vasopressin concentrations, was diminished by prior exposure to cholera toxin or forskolin, whilst that observed in the presence of maximal concentrations of the hormone was enhanced in pertussis-toxin-treated cells. In the presence of [32P]NAD+, both cholera toxin and pertussis toxin provoked the labelling of peptides with approximate Mrs of 45,000 and 41,000 respectively in the membranes of WRK 1 cells. Exposure to cholera toxin or forskolin for 15-18 h enhanced cyclic AMP accumulation in these cells. The concentrations of these agents which provoked half-maximal cyclic AMP accumulation were similar to those required to diminish receptor-mediated inositol phosphate accumulation by 50%. In contrast, half-maximal ADP-ribosylation of the 45,000Mr peptide needed 100-fold greater concentrations of the toxin than were effective in provoking half-maximal inhibition of inositol phosphate accumulation. Cholera toxin or forskolin also reduced the maximal specific binding, to intact WRK 1 cells, of both [3H][Arg8]vasopressin and the V1a antagonist [3H][beta-mercapto-beta,beta-cyclopentamethylenepropionic acid,O-methyl-Tyr2, Arg8]vasopressin. The kinetics for the loss of this binding capacity following cholera-toxin treatment were very similar to those describing the diminution of vasopressin-stimulated inositol phosphate accumulation in the same cells.  相似文献   

20.
Pretreatment of Balbc-3T3 cells with platelet-derived growth factor (PDGF) has been shown to decrease binding sites for 125I-labelled epidermal growth factor (EGF) (1,2,3). Agents which elevate cellular cyclic AMP concentrations enhance this ability, and the change in EGF binding is inversely proportional to the elevation of cyclic AMP. In quiescent density arrested cells, the sensitivity of cells to down regulation of EGF receptors by PDGF is proportional to the cyclic AMP content of the cultures in three different cell lines. Agents which elevate cyclic AMP and which potentiate PDGF mediated heterologous down regulation of EGF receptors are able, like cholera toxin (3), to stimulate cells to synthesize DNA in defined medium in the absence of EGF. Down regulation of EGF receptors by PDGF in combination with agents elevating cyclic AMP effectively mimics the action of EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号