首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that cAMP or calcium are the second messengers of erythropoietin (Epo) was tested on fractionated, Epo-responsive immature erythroblasts from anemic rabbit bone marrow by examining whether the proliferative effects of the hormone could be mimicked by agents that increase the intracellular concentration of cAMP or Ca2+. None of the compounds tested (including 10(-6)-10(-4) M db-cAMP, forskolin, isoprenaline or 10(-7)-10(-6) M of the calcium ionophore A23187) alone or in combination could either initiate or potentiate the mitogenic action of the hormone. Furthermore, addition of 0.2 U/ml erythropoietin produced no permanent or transient increase in the uptake of 45Ca2+ by erythroblasts at 37 degrees C. However, cells cultured with imidazole or cordycepin (which reduce the level of intracellular cAMP), or with the calcium chelator EGTA, or the drugs verapamil or TMB-8 (which interfere with the utilization of extracellular or intracellular calcium) showed a decreased stimulation of DNA synthesis by Epo. Finally, the tumour promoter phorbol ester TPA could partially mimic the action of Epo when added to cultures containing more immature progenitor cells. We conclude then that an artificial increase in the cytoplasmic concentration of either cAMP or Ca2+ is not sufficient to elicit the proliferation of Epo-responsive cells.  相似文献   

2.
J Singh  S Chatterjee 《Cytobios》1988,55(221):95-103
The level of calmodulin (CaM), a ubiquitous calcium-binding protein of eukaryotic cells was determined at different phases of the cell cycle in a synchronized Tetrahymena population. It was found that the concentration of CaM at G1 was approximately half of the concentration of S and this 2 x G1 level of CaM was maintained through the G2 and M stages of the cell cycle. To ascertain the role of CaM in the initiation of DNA synthesis, the cells were treated with trifluoperazine (TFP), a CaM antagonist, and EGTA (Ca2+-chelator) at the G1/S boundary. It was found that DNA synthesis was inhibited in these drug-treated cells. The uptake of the nucleotide precursor was not affected in TFP and EGTA treated cells, thus excluding the possibility of alteration in the membrane transport properties. Treatment with TFP failed to inhibit the synchronous mitotic division in Tetrahymena. The existence of a variable content of CaM through the cell cycle of Tetrahymena was demonstrated, suggesting the possible involvement of this Ca2+-binding protein in the nuclear DNA replication process.  相似文献   

3.
The chemoattractant cAMP elicits a transient efflux of K+ in cell suspensions of Dictyostelium discoideum. This cellular response displayed half-maximal activity at about 1 microM cAMP and saturated at 100 microM cAMP, cAMP-stimulated K+ efflux, measured with a K+-sensitive electrode, depended on the extracellular free Ca2+ concentration ([Ca2+]0) and was maximal in the presence of EGTA. Usually more than 90% of the K+ release could be inhibited by the addition of Ca2+. Half-maximal reduction occurred at about 2 microM [Ca2+]0. Inhibition was also observed in the presence of caffeine or A23187, drugs known to elevate the intracellular free Ca2+ concentration ([Ca2+]i). Under conditions where [Ca2+]0 was maintained at a low level, half-maximal inhibition was 1 mM for caffeine and 3 microM for A23187. These results indicate that Cai2+ is involved in the regulation of K+ efflux. Simultaneous measurements of Ca2+ uptake and K+ efflux induced by cAMP as well as free running oscillations of both ions revealed that initiation and termination of Ca2+ uptake slightly preceded those of K+ efflux.  相似文献   

4.
Both dibutyryl cAMP and carbachol stimulated amylase are released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 μM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 μM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

5.
Both dibutyryl cAMP and carbachol stimulated amylase released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 microM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 microM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

6.
Trypanosoma cruzi, the protozoan responsible for Chagas disease, employs distinct strategies to invade mammalian host cells. In the present work we investigated the participation of calcium ions on the invasion process using primary cultures of embryonic mice cardiomyocytes which exhibit spontaneous contraction in vitro. Using Fura 2-AM we found that T. cruzi was able to induce a sustained increase in basal intracellular Ca2+ level in heart muscle cells (HMC), the response being associated or not with Ca2+ transient peaks. Assays performed with both Y and CL strains indicated that the changes in intracellular Ca2+ started after parasites contacted with the cardiomyocytes and the evoked response was higher than the Ca2+ signal associated to the spontaneous contractions. The possible role of the extracellular and intracellular Ca2+ levels on T. cruzi invasion process was evaluated using the extracellular Ca2+ chelator EGTA alone or in association with the calcium ionophore A23187. Significant dose dependent inhibition of the invasion levels were found when intracellular calcium release was prevented by the association of EGTA +A23187 in calcium free medium. Dose response experiments indicated that EGTA 2.5 mM to 5 mM decreased the invasion level by 15.2 to 35.1% while A23187 (0.5 M) alone did not induce significant effects (17%); treatment of the cultures with the protease inhibitor leupeptin did not affect the endocytic index, thus arguing against the involvement of leupeptin sensitive proteases in the invasion of HMC.  相似文献   

7.
休止于第二次成熟分裂中期(MI)的小鼠卵母细胞分别乙醇,钙离子载体A23187、电刺激或精子激活并用Ca^2+特异荧光探针-Fura2/AM测定细胞内游离Ca^2+的变化。结果表明,受精诱导MⅡ卵内游离Ca^2+浓度多次跃升(oscillation)乙醇,钙离子载体及1次电刺激仅诱导胞内Ca^2+1次升高,人工诱导激活的卵可象正常受精卵一样卵裂并发育至囊胚,用EGTA阻止受精和人工激活过程中卵内游  相似文献   

8.
1. Amino acid incorporation in intact rabbit reticulocytes was unaffected by depletion of Ca2+ with EGTA. 2. The Ca2+ ionophore A23187 strongly inhibited incorporation in reticulocytes incubated in 1 mM Ca2+ but not in EGTA. Polysomal profiles and average ribosomal transit times of cells treated with Ca2+ ionophore at 1 mM Ca2+ were characteristic of translational elongation block. 3. The behavior of reticulocytes with respect to Ca2+ and A23187 contrasts with that of nucleated cells possessing endoplasmic reticulum in which protein synthesis is inhibited at translational initiation by either Ca2+ depletion or by exposure to Ca2+ ionophore.  相似文献   

9.
The differential effect of cAMP on the regulation of early biochemical and cellular functions mediated through two different receptors on murine B cells are reported here. Surface IgM, the Ag receptor, and Lyb2, a 45-kDa differentiation Ag are concomitantly expressed on mature murine B lymphocytes. Triggering of B cells through these molecules, independently, resulted in inositol 1,4,5-triphosphate (IP3) generation, increase in intracellular Ca2+ levels, and cell enlargement associated with progression of cells from G0 to G1 ultimately resulting in DNA synthesis. Pretreatment of resting B cells with cholera toxin as well as other agents that raise the intracellular cAMP [(cAMP)i] such as forskolin, N6,2'-O-dibutyryl cyclic AMP, and 3-isobutyl-1 methyl xanthine inhibited the Ag receptor but not Lyb2-mediated DNA synthesis. The elevation of (cAMP)i inhibited the surface IgM but not Lyb2-mediated IP3 generation, Ca2+ response, and progression from G0 to G1 phase of the cell cycle. Failure of forskolin or N6,2'-O-dibutyryl cyclic AMP to inhibit Lyb2-mediated responses did not appear to be due to induction of cAMP-specific phosphodiesterase activity. Concentrations of H8 [N-(2-(methylamino)-ethyl)-5-isoquinoline sulfonamide, diHCl] inhibitory to cAMP dependent PKA prevented the inhibitory effect of forskolin on surface IgM-mediated Ca2+ response, suggesting that cAMP exerted its effects through PKA. These findings suggest that distinct PLC-coupled receptors, such as sIgM and Lyb2 molecules in B cells, may use either alternative mechanisms for phosphatidylinositol 4,5-bisphosphate hydrolysis or may use different intermediary transducer molecules that differ in their sensitivity to increased (cAMP)i levels. Thus "cross-talk" among cAMP and phosphatidylinositol signaling pathways was demonstrated for IgM but not Lyb2-mediated B cell activation.  相似文献   

10.
11.
The property of intensive 45Ca2+ uptake by A-431 human epidermoidal carcinoma cells was indicated to be an influx, not binding to the cell surface, since the two apparent dissociation constants (Kd) between 45Ca2+ and cells were almost the same when measured in either the presence or absence of 1 mM [ethylenebis (oxyethylenenitrilo)]tetraacetic acid (EGTA); these constants were approximately 5-10 x 10(-6) and 1 x 10(-4) M, respectively, which are much higher than the chelating constant of EGTA for Ca2+ (approximately 10(-11) M). Furthermore, addition of A23187, a calcium ionophore, rapidly released the 45Ca2+ incorporated into cells at both 37 degrees C and 0 degrees C. The 45Ca2+ associated with the cells was slowly released or exchanged when cells were incubated in medium depleted of Ca2+, or in that containing 1 mM non-radioactive Ca2+. The ability of A-431 cells to respond to extracellular ATP by elevating their level of intracellular calcium ions, as well as by producing inositol trisphosphate (InsP3), was suppressed in cells depleted of cellular calcium. These data suggest that calcium ions are extensively incorporated or exchanged with those outside the cells, maintained as stored calcium, and involved in production of InsP3, when A-431 cells are stimulated by ATP to trigger the signal transduction system.  相似文献   

12.
The B subunit of cholera toxin, which binds specifically to ganglioside GM1, stimulates DNA synthesis in quiescent Swiss 3T3 fibroblasts grown in chemically defined medium. The mitogenic response to the B subunit was potentiated by insulin and other growth factors. To elucidate the mechanism by which the B subunit stimulates cell growth , its effects on several transmembrane signaling systems which have been suggested to play a vital role in cell growth regulation were examined. The B subunit did not increase cAMP levels nor activate adenylate cyclase. The B subunit induced a rapid and profound increase in intracellular free Ca2+ as measured with the fluorescent Ca2+-sensitive dye quin 2/AM. Removal of external Ca2+ completely inhibited the signal, thus suggesting that the B subunit elevates intracellular Ca2+ through a net influx of extracellular Ca2+ rather than by causing the release of Ca2+ from intracellular stores. These findings are consistent with the observations that the B subunit induced reinitiation of DNA synthesis without activation of phospholipase C. There was no increase in the formation of inositol trisphosphate, the second messenger that mediates release of Ca2+ from intracellular stores. In addition, the B subunit still stimulated DNA synthesis in Swiss 3T3 cells pretreated with phorbol ester to down-regulate protein kinase C. These results suggest that the mitogenic effects of the B subunit are mediated mainly by facilitation of Ca2+ influx and that activations of adenylate cyclase, phospholipase C, or protein kinase C are not obligatory steps in the initiation of cell growth by the B subunit. Furthermore, the observation that Ca2+ ionophores, such as ionomycin and A23187, are not mitogenic implies that additional undefined growth signaling pathways may exist in this system.  相似文献   

13.
Levels of intracellular calcium, (Ca(2+))(i), from different stages of cell cycle of Dictyostelium discoideum were monitored using the fluorescent Ca(2+)-sensitive dye, Indo 1. Combinations of Ca(2+)-ionophore (A23187) and Ca(2+)-chelator (EGTA) resulted in the inhibition of progression of cell cycle. This delay was caused due to block in G(2)/M-->S phase transition of the cell cycle. Rescue of the cell cycle progression was made with 0.5 m m of exogenous Ca(2+). High (Ca(2+))(i)levels overlapped with the S-phase, of the cell cycle.Results indicate that a high (Ca(2+))(i)level during S-phase is not required for cell cycle progression but for cell-type choice mechanism at the onset of starvation, and these cells tend to follow the prestalk pathway.  相似文献   

14.
1,3-Dipropyl-8-cyclopentylxanthine (DPCPX), a xanthine analog used as selective antagonist of adenosine receptors, caused apoptosis in a human leukemia T cell line. Jurkat cells treated with DPCPX underwent apoptosis as demonstrated by flow cytometry, by DNA fragmentation and by accumulation of histones, H2A, H2B, H3 and H4, in the nucleoplasm of cells. Cell cycle and cell sorting analyses indicated an arrest of cells in G(2)/M followed by the appearance of apoptotic cells in G(1) and G(2)/M phases. The mechanism of programmed cell death does not seem to be mediated by signal transduction events at the plasma membrane since it did not involve activation of cell membrane receptors and modification of the intracellular levels of Ca(2+) or cAMP. Apoptosis by incorporation into DNA of a derivative of DPCPX is suggested in basis of the presence of radioactivity label in the DNA obtained from cells preincubated with [(3)H]DPCPX.  相似文献   

15.
In dispersed rat parotid gland acinar cells, the beta-adrenergic agonist (-)-isoproterenol, but not its stereoisomer (+)-isoproterenol, induced a transient 1.6-fold (at maximum stimulation, 2 x 10(-4) M) increase in cytosolic free calcium ([Ca2+]i) within 9 s, which returned to resting levels (approximately 190 nM) by 60 s. This [Ca2+]i response was not altered by chelating extracellular Ca2+ with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) and could be completely blocked by the beta-adrenergic antagonists propranolol (beta 1 + beta 2) and ICI 118,551 (beta 2) but not by atenolol (beta 1). The muscarinic-cholinergic agonist carbachol (at maximum stimulation, 10(-5) M) induced a 3-4-fold elevation in [Ca2+]i within 6 s, which slowly returned to resting levels by 8-10 min. The peak carbachol [Ca2+]i response was not substantially altered by the addition of EGTA to the extracellular medium. However, if the cells were first stimulated with isoproterenol in the EGTA-containing medium, the peak carbachol response was decreased approximately 54%. When carbachol was added to cells in the presence of high extracellular calcium, at the isoproterenol-stimulated [Ca2+]i peak, the resulting [Ca2+]i level was equal to that achieved when carbachol was either added alone or added after propranolol and isoproterenol. 8-Bromo-cyclic AMP induced a [Ca2+]i response similar to that elicited by isoproterenol, which was not additive to that by carbachol. Carbachol induced a approximately 3.5-fold increase in inositol trisphosphate (IP3) production in parotid cells within 30 s. 8-Bromo-cAMP, N6,O2'-dioctanoyl-cAMP, and isoproterenol consistently induced a significant stimulation in IP3 production. The half-maximal concentration of isoproterenol required for [Ca2+]i mobilization and IP3 production was comparable (approximately 10(-5) M). Isoproterenol-induced IP3 formation was blocked by propranolol. The data show that in rat parotid acinar cells, beta-adrenergic stimulation results in IP3 formation and mobilization of a carbachol-sensitive intracellular Ca2+ pool by a mechanism involving cAMP. This demonstrates an interaction between the cAMP and phosphoinositide second messenger systems in these cells.  相似文献   

16.
We determined the cellular free calcium concentration [Ca2+]i in response to arginine vasopressin (AVP) using single cells of cultured rat renal papillary collecting tubule cells. AVP at a concentration of 1 x 10(-10) M or higher significantly increased [Ca2+]i in a dose-dependent manner. The prompt increase in [Ca2+]i induced by AVP was completely blocked by the V1V2 antagonist, but not by the V1 antagonist. Also, an antidiuretic agonist of 1-deamino-8-D-arginine vasopressin (dDAVP) increased [Ca2+]i, which was blocked by the pretreatment with the V1 V2 antagonist. An AVP-induced increase in [Ca2+]i was still demonstrable in cells pretreated with Ca2(+)-free medium containing 1 x 10(-3) M EGTA, or a blocker of cellular Ca2+ uptake, 5 x 10(-5) M verapamil. These results indicate that AVP increases [Ca2+]i through the V2 receptor in renal papillary collecting tubule cells where cAMP is a well-known second messenger for AVP, and that cellular free Ca2+ mobilization depends on both the intracellular and extracellular Ca2+.  相似文献   

17.
Treatment of MCF-7 breast cancer cells with the marine toxin maitotoxin (MTX) induces cell death. The cytotoxic effects are clearly detectable within 2-4 h after cell treatment with 10(-10)-10(-9) M concentrations of MTX. The response was found to depend on extracellular Ca2+, inasmuch as cell death was prevented when culture dishes received MTX, following addition of EGTA. MTX caused transient phosphorylation of extracellular signal-regulated kinase isoforms 1 and 2 (ERK1 and ERK2) mitogen-activated protein kinase isoforms in MCF-7 cells, which was maximal 15 min after toxin addition to culture vessels. The effect was dependent on influx of extracellular Ca2+, as it was abolished by EGTA, and was induced by ionophores, such as A23187 and ionomycin. Our findings show that signaling pathways involving Ca2+ ions may cause activation of ERK1 and ERK2 in cell death responses.  相似文献   

18.
Corpora lutea (CL) from Days 5, 10, and 15 after superovulation were enzymatically dispersed, and a portion of the cells were elutriated to obtain fractions enriched with small or large luteal cells. Mixed, small, and large luteal cell fractions were incubated with no treatment or with agonists or antagonists of cAMP (dbcAMP or Rp-cAMPS), protein kinase C (PKC; TPA or H-7), or calcium (A23187, EGTA, or A23187 + EGTA). The rate of contact-dependent gap junctional intercellular communication (GJIC) was evaluated by laser cytometry. Media were collected for progesterone (P(4)) radioimmunoassay, and luteal cells cultured with no treatment were fixed for immunocytochemistry or frozen for Western blot analysis. Luteal cells from each stage of the estrous cycle exhibited GJIC. The dbcAMP increased (P < 0.05) GJIC for all cell types across the estrous cycle. The Rp-cAMPS decreased (P < 0.05) GJIC for small luteal cells on Day 5 and for all cell types on Days 10 and 15. The TPA inhibited (P < 0.01), but H-7 did not affect, GJIC for all cell types across the estrous cycle. The A23187 decreased (P < 0.05) GJIC for large luteal cells touching only small or only large luteal cells, whereas A23187 + EGTA decreased (P < 0.05) GJIC for all cell types across the estrous cycle. For the mixed and large luteal cell fractions, dbcAMP increased (P < 0.05), but TPA and A23187 + EGTA decreased (P < 0.05), P(4) secretion. The A23187 alone decreased (P < 0.05) P(4) secretion by large, but not by mixed, luteal cells. For all days and cell types, the rate of GJIC and P(4) secretion were correlated (r = 0.113-0.249; P < 0.01). Connexin 43 was detected in cultured luteal cells by immunofluorescence and Western immunoblotting. Thus, intracellular regulators like cAMP, PKC, or calcium appear to regulate GJIC, which probably is an important mechanism for coordinating function of the ovine CL.  相似文献   

19.
Mechanical force regulates gene expression and cell proliferation in a variety of cell types, but the mechanotransducers and signaling mechanisms involved are highly speculative. We studied the fibroblast signaling mechanism that is activated when cells are switched from mechanically stressed to mechanically relaxed conditions, i.e., stress relaxation. Within 10 min after initiation of stress relaxation, we observed a transient 10-20-fold increase in cytoplasmic cyclic AMP (cAMP) and a threefold increase in protein kinase A activity. The increase in cAMP depended on stimulation of adenylyl cyclase rather than inhibition of phosphodiesterase. Generation of cAMP was inhibited by indomethacin, and release of arachidonic acid was found to be an upstream step of the pathway. Activation of signaling also depended on influx of extracellular Ca2+ because addition of EGTA to the incubations at concentrations just sufficient to exceed Ca2+ in the medium inhibited the stress relaxation-dependent increase in free arachidonic acid and cAMP. This inhibition was overcome by adding CaCl2 to the medium. On the other hand, treating fibroblasts in mechanically stressed cultures with the calcium ionophore A23187-stimulated arachidonic acid and cAMP production even without stress relaxation. In summary, our results show that fibroblast stress relaxation results in activation of a Ca(2+)-dependent, adenylyl cyclase signaling pathway. Overall, the effect of stress relaxation on cAMP and PKA levels was equivalent to that observed after treatment of cells with forskolin.  相似文献   

20.
Bovine adrenocortical cells express bTREK-1 K(+) (bovine KCNK2) channels that are inhibited by ANG II through a Gq-coupled receptor by separate Ca(2+) and ATP hydrolysis-dependent signaling pathways. Whole cell and single patch clamp recording from adrenal zona fasciculata (AZF) cells were used to characterize Ca(2+)-dependent inhibition of bTREK-1. In whole cell recordings with pipette solutions containing 0.5 mM EGTA and no ATP, the Ca(2+) ionophore ionomycin (1 μM) produced a transient inhibition of bTREK-1 that reversed spontaneously within minutes. At higher concentrations, ionomycin (5-10 μM) produced a sustained inhibition of bTREK-1 that was reversible upon washing, even in the absence of hydrolyzable [ATP](i). BAPTA was much more effective than EGTA at suppressing bTREK-1 inhibition by ANG II. When intracellular Ca(2+) concentration ([Ca(2+)](i)) was buffered to 20 nM with either 11 mM BAPTA or EGTA, ANG II (10 nM) inhibited bTREK-1 by 12.0 ± 4.5% (n=11) and 59.3 ± 8.4% (n=4), respectively. Inclusion of the water-soluble phosphatidylinositol 4,5-bisphosphate (PIP(2)) analog DiC(8)PI(4,5)P(2) in the pipette failed to increase bTREK-1 expression or reduce its inhibition by ANG II. The open probability (P(o)) of unitary bTREK-1 channels recorded from inside-out patches was reduced by Ca(2+) (10-35 μM) in a concentration-dependent manner. These results are consistent with a model in which ANG II inhibits bTREK-1 K(+) channels by a Ca(2+)-dependent mechanism that does not require the depletion of membrane-associated PIP(2). They further indicate that the Ca(2+) source is located in close proximity within a "Ca(2+) nanodomain" of bTREK-1 channels, where [Ca(2+)](i) may reach concentrations of >10 μM. bTREK-1 is the first two-pore K(+) channel shown to be inhibited by Ca(2+) through activation of a G protein-coupled receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号