首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decoding of the UGA codon in mRNAs for selenoproteins as selenocysteine requires interaction of the translation factor SelB with an mRNA structure, the SECIS element. A genetic analysis of this interaction was performed by selecting for intergenic suppressor mutations in selB which counteracted the detrimental effect of defined mutations in the SECIS element. Both allele-nonspecific and allele-specific mutations, as judged by readthrough of the UGA into the LacZ-encoding segment of fdhF ′-′lacZ fusions and by incorporation of selenium, were isolated. selB genes from ten suppressor mutants were sequenced and the corresponding mutations were localized to five positions within the protein. Four of the suppressors had amino acid exchanges within a 23-amino acid stretch in domain 4b of SelB, which probably represent sites of contact between the protein and the mRNA. A fifth mutation was localized in domain 4a of SelB; it promoted allele-nonspecific readthrough. Since a truncated SelB species lacking domain 4b did not show complex formation with the SECIS element, we speculate that the latter mutation affects the interaction between the tRNA-binding and the mRNA-binding domains. None of the SelB variants was able to promote UGA readthrough when major structural changes that altered the length of the helical part or enlarged the apical loop were introduced into the SECIS element. The results obtained also show that novel pairs of SelB/SECIS derivatives can be generated which may be useful for the targeted insertion of selenocysteine into proteins. Received: 29 June 1999 / Accepted: 10 July 1999  相似文献   

2.
Co-translational insertion of selenocysteine (Sec) into proteins in response to UGA codons is directed by selenocysteine insertion sequence (SECIS) elements. In known bacterial selenoprotein genes, SECIS elements are located in the coding regions immediately downstream of UGA codons. Here, we report that a distant SECIS element can also function in Sec insertion in bacteria provided that it is spatially close to the UGA codon. We expressed a mammalian phospholipid hydroperoxide glutathione peroxidase in Escherichia coli from a construct in which a natural E.coli SECIS element was located in the 3′-untranslated region (3′-UTR) and adjacent to a sequence complementary to the region downstream of the Sec UGA codon. Although the major readthrough event at the UGA codon was insertion of tryptophan, Sec was also incorporated and its insertion was dependent on the functional SECIS element in the UTR, base-pairing potential of the SECIS flanking region and the Sec UGA codon. These data provide important implications into evolution of SECIS elements and development of a system for heterologous expression of selenoproteins and show that in addition to the primary sequence arrangement between UGA codons and SECIS elements, their proximity within the tertiary structure can support Sec insertion in bacteria.  相似文献   

3.
Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.  相似文献   

4.
Incorporation of the non-canonical amino acid selenocysteine into proteins requires the activity of the elongation factor SelB which substitutes for the function of EF-Tu. In contrast to EF-Tu, SelB binds selenocystylated tRNASecand an mRNA secondary structure adjacent to the UGA selenocysteine codon. To gain information on the domain structure of this specialized translation factor, theselBgenes from two bacteria unrelated toEscherichia coli(Clostridium thermoaceticumandDesulfomicrobium baculatum) were cloned and sequenced. The derived amino acid residue sequences were compared to those of SelB fromE. coliandHaemophilus influenzaeand to EF-Tu sequences. The alignment revealed that SelB contains all three domains characterized for EF-Tu. A fourth, C-terminally located domain shows only limited sequence conservation within the four SelB proteins. To elucidate the function of this C-terminal part a structure-function analysis of SelB fromE. coliwas performed. It showed that a C-terminal 17 kDa subdomain of the translation factor, when expressed separately, specifically binds the mRNA secondary structure. The recognition motif itself could be reduced to a 17 nucleotide minihelix without loss of binding affinity and specificity. A truncated SelB lacking the mRNA binding domain was still able to interact with selenocysteyl-tRNASec. Expression of the mRNA binding domain alone suppressed selenocysteine insertionin vivoby competing with SelB for its binding site at the mRNA. The results indicate that SelB can be considered as an EF-Tu homolog hooked to the mRNAviaits C-terminal domain.  相似文献   

5.
The genetic code, once thought to be rigid, has been found to permit several alternatives in its reading. Interesting alternative relates to the function of the UGA codon. Usually, it acts as a stop codon, but it can also direct the incorporation of the amino acid selenocysteine into a polypeptide. UGA-directed selenocysteine incorporation requires a cis-acting mRNA element called the "selenocysteine insertion sequence" (SECIS) that can form a stem-loop RNA structure. Here we discuss our investigation on the E. coli SECIS. This includes the follows: 1) The nature of the minimal E. coli SECIS. We found that in E. coli only the upper-stem and loop of 17 nucleotides of the SECIS is necessary for selenocysteine incorporation on the condition that it is located in the proper distance from the UGA [34]; 2) The upper stem and loop structure carries a bulged U residue that is required for selenocysteine incorporation [34] because of its interaction with SelB; and 3) We described an extended fdhF SECIS that includes the information for an additional function: The prevention of UGA readthrough under conditions of selenium deficiency [35]. This information is contained in a short mRNA region consisting of a single C residue adjacent to the UGA on its downstream side, and an additional segment consisting of the six nucleotides immediately upstream from it. These two regions act independently and additively and probably through different mechanisms. The single C residue acts as itself; the upstream region acts at the level of the two amino acids, arginine and valine, for which it codes. These two codons at the 5' side of the UGA correspond to the ribosomal E and P sites. Finally, we present a model for the E. coli fdhF SECIS as a multifunctional RNA structure containing three functional elements. Depending on the availability of selenium the SECIS enables one of two alternatives for the translational machinery: Either selenocysteine incorporation into a polypeptide or termination of the polypeptide chain.  相似文献   

6.
The selenocysteine insertion sequence (SECIS) element directs the translational recoding of UGA as selenocysteine. In eukaryotes, the SECIS is located downstream of the UGA codon in the 3′-UTR of the selenoprotein mRNA. Despite poor sequence conservation, all SECIS elements form a similar stem-loop structure containing a putative kink-turn motif. We functionally characterized the 26 SECIS elements encoded in the human genome. Surprisingly, the SECIS elements displayed a wide range of UGA recoding activities, spanning several 1000-fold in vivo and several 100-fold in vitro. The difference in activity between a representative strong and weak SECIS element was not explained by differential binding affinity of SECIS binding Protein 2, a limiting factor for selenocysteine incorporation. Using chimeric SECIS molecules, we identified the internal loop and helix 2, which flank the kink-turn motif, as critical determinants of UGA recoding activity. The simultaneous presence of a GC base pair in helix 2 and a U in the 5′-side of the internal loop was a statistically significant predictor of weak recoding activity. Thus, the SECIS contains intrinsic information that modulates selenocysteine incorporation efficiency.  相似文献   

7.
The UGA codon, which usually acts as a stop codon, can also direct the incorporation into a protein of the amino acid selenocysteine. This UGA decoding process requires a cis-acting mRNA element called the selenocysteine insertion sequence (SECIS), which can form a stem-loop structure. In Escherichia coli, selenocysteine incorporation requires only the 17-nucleotide-long upper stem-loop structure of the fdhF SECIS. This structure carries a bulged nucleotide U at position 17. Here we asked whether the single bulged nucleotide located in the upper stem-loop structure of the E. coli fdhF SECIS is involved in the in vivo interaction with SelB. We used a genetic approach, generating and characterizing selB mutations that suppress mutations of the bulged nucleotide in the SECIS. All the selB suppressor mutations isolated were clustered in a region corresponding to 28 amino acids in the SelB C-terminal subdomain 4b. These selB suppressor mutations were also found to suppress mutations in either the loop or the upper stem of the E. coli SECIS. Thus, the E. coli SECIS upper stem-loop structure can be considered a "single suppressible unit," suggesting that there is some flexibility to the nature of the interaction between this element and SelB.  相似文献   

8.
In mammalian selenoprotein mRNAs, the recognition of UGA as selenocysteine requires selenocysteine insertion sequence (SECIS) elements that are contained in a stable stem-loop structure in the 3' untranslated region (UTR). In this study, we investigated the SECIS elements and cellular proteins required for selenocysteine insertion in rat phospholipid hydroperoxide glutathione peroxidase (PhGPx). We developed a translational readthrough assay for selenoprotein biosynthesis by using the gene for luciferase as a reporter. Insertion of a UGA or UAA codon into the coding region of luciferase abolished luciferase activity. However, activity was restored to the UGA mutant, but not to the UAA mutant, upon insertion of the PhGPx 3' UTR. The 3' UTR of rat glutathione peroxidase (GPx) also allowed translational readthrough, whereas the PhGPx and GPx antisense 3' UTRs did not. Deletion of two conserved SECIS elements in the PhGPx 3' UTR (AUGA in the 5' stem or AAAAC in the terminal loop) abolished readthrough activity. UV cross-linking studies identified a 120-kDa protein in rat testis that binds specifically to the sense strands of the PhGPx and GPx 3' UTRs. Direct cross-linking and competition experiments with deletion mutant RNAs demonstrated that binding of the 120-kDa protein requires the AUGA SECIS element but not AAAAC. Point mutations in the AUGA motif that abolished protein binding also prevented readthrough of the UGA codon. Our results suggest that the 120-kDa protein is a significant component of the mechanism of selenocysteine incorporation in mammalian cells.  相似文献   

9.
The cotranslational incorporation of selenocysteine into proteins is mediated by a specialized elongation factor, named SelB. Its amino-terminal three domains show homology to elongation factor EF-Tu and accordingly bind GTP and selenocysteyl-tRNASec. In addition, SelB exhibits a long carboxy-terminal extension that interacts with a secondary structure of selenoprotein mRNAs (SECIS element) positioned immediately downstream of the in-frame UGA codons specifying the sites of selenocysteine insertion. In this report, a fast and efficient method for the purification of large amounts of hexahistidine-tagged SelB is presented. After two chromatographic steps, 10 mg pure protein was isolated from 12 g wet cell pellet. Biochemical analysis of the purified protein showed that the tag does not influence the interaction of SelB with guanine nucleotides, SECIS elements, and selenocysteyl-tRNASec. In addition, the fusion protein is fully functional in mediating UGA read-through in vivo. It therefore represents an excellent model for studying the function of SelB and the mechanisms of selenocysteine incorporation.  相似文献   

10.
Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3'-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins.  相似文献   

11.
The kinetics and efficiency of decoding of the UGA of a bacterial selenoprotein mRNA with selenocysteine has been studied in vivo. A gst-lacZ fusion, with the fdhF SECIS element ligated between the two fusion partners, gave an efficiency of read-through of 4-5%; overproduction of the selenocysteine insertion machinery increased it to 7-10%. This low efficiency is caused by termination at the UGA and not by translational barriers at the SECIS. When the selenocysteine UGA codon was replaced by UCA, and tRNASec with anticodon UGA was allowed to compete with seryl-tRNASer1 for this codon, selenocysteine was found in 7% of the protein produced. When a non-cognate SelB-tRNASec complex competed with EF-Tu for a sense codon, no effects were seen, whereas a non-cognate SelB-tRNASec competing with EF-Tu-mediated Su7-tRNA nonsense suppression of UGA interfered strongly with suppression. The induction kinetics of beta-galactosidase synthesis from fdhF'-'lacZ gene fusions in the absence or presence of SelB and/or the SECIS element, showed that there was a translational pause in the fusion containing the SECIS when SelB was present. The results show that decoding of UGA is an inefficient process and that using the third dimension of the mRNA to accommodate an additional amino acid is accompanied by considerable quantitative and kinetic costs.  相似文献   

12.
A selenocysteine insertion sequence (SECIS) element in the 3'-untranslated region and an in-frame UGA codon are the requisite cis-acting elements for the incorporation of selenocysteine into selenoproteins. Equally important are the trans-acting factors SBP2, Sec-tRNA[Ser]Sec, and eEFSec. Multiple in-frame UGAs and two SECIS elements make the mRNA encoding selenoprotein P (Sel P) unique. To study the role of codon context in determining the efficiency of UGA readthrough at each of the 10 rat Sel P Sec codons, we individually cloned 27-nucleotide-long fragments representing each UGA codon context into a luciferase reporter construct harboring both Sel P SECIS elements. Significant differences, spanning an 8-fold range of UGA readthrough efficiency, were observed, but these differences were dramatically reduced in the presence of excess SBP2. Mutational analysis of the "fourth base" of contexts 1 and 5 revealed that only the latter followed the established rules for hierarchy of translation termination. In addition, mutations in either or both of the Sel P SECIS elements resulted in differential effects on UGA readthrough. Interestingly, even when both SECIS elements harbored a mutation of the core region required for Sec incorporation, context 5 retained a significantly higher level of readthrough than context 1. We also show that SBP2-dependent Sec incorporation is able to repress G418-induced UGA readthrough as well as eRF1-induced stimulation of termination. We conclude that a large codon context forms a cis-element that works together with Sec incorporation factors to determine readthrough efficiency.  相似文献   

13.
Selenocysteine insertion into archaeal selenopolypeptides is directed through an mRNA structure (the SECIS element) situated in the 3' non-translated region like in eukaryotes. To elucidate the mechanism how this element affects decoding of an in-frame UGA with selenocysteine the open reading frames of the genome of Methanococcus jannaschii were searched for the existence of a homolog to the bacterial specialized translation factor SelB. The product of the open reading frame MJ0495 was identified as the archaeal SelB homolog on the basis of the following characteristics: (1) MJ0495 possesses sequence features characteristic of bacterial SelB; (2) purified MJ0495 displays guanine nucleotide binding properties like SelB; and (3) it preferentially binds selenocysteyl-tRNA(Sec). In contrast to bacterial SelB, however, no binding of MJ0495 protein to the SECIS element of the mRNA was found under the experimental conditions employed which correlates with the fact that MJ0495 lacks the C-terminal domain of the bacterial SelB protein known to bind the SECIS element. It is speculated that in Archaea the functions of bacterial SelB are distributed over at least two proteins, one, serving as the specific translation factor, like MJ0495, and another one, binding to the SECIS which interacts with the ribosome and primes it to decode UGA.  相似文献   

14.
15.

Background

Selenium, an essential dietary micronutrient, is incorporated into proteins as the amino acid selenocysteine (Sec) in response to in-frame UGA codons. Complex machinery ensures accurate recoding of Sec codons in higher organisms. A specialized elongation factor eEFSec is central to the process.

Scope of review

Selenoprotein synthesis relies on selenocysteinyl-tRNASec (Sec-tRNASec), selenocysteine inserting sequence (SECIS) and other selenoprotein mRNA elements, an in-trans SECIS binding protein 2 (SBP2) protein factor, and eEFSec. The exact mechanisms of discrete steps of the Sec UGA recoding are not well understood. However, recent studies on mammalian model systems have revealed the first insights into these mechanisms. Herein, we summarize the current knowledge about the structure and role of mammalian eEFSec.

Major conclusions

eEFSec folds into a chalice-like structure resembling that of the archaeal and bacterial orthologues SelB and the initiation protein factor IF2/eIF5B. The three N-terminal domains harbor major functional sites and adopt an EF-Tu-like fold. The C-terminal domain 4 binds to Sec-tRNASec and SBP2, senses distinct binding domains, and modulates the GTPase activity. Remarkably, GTP hydrolysis does not induce a canonical conformational change in eEFSec, but instead promotes a slight ratchet of domains 1 and 2 and a lever-like movement of domain 4, which may be critical for the release of Sec-tRNASec on the ribosome.

General significance

Based on current findings, a non-canonical mechanism for elongation of selenoprotein synthesis at the Sec UGA codon is proposed. Although incomplete, our understanding of this fundamental biological process is significantly improved, and it is being harnessed for biomedical and synthetic biology initiatives. This article is part of a Special Issue entitled “Selenium research” in celebration of 200 years of selenium discovery, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.  相似文献   

16.
17.
To investigate the stringency of the Escherichia coli selenocysteine insertion sequence (SECIS) requirements, libraries of SECIS variants were screened via a novel method in which suppression of the selenocysteine (Sec) opal codon was coupled to bacteriophage plaque formation. The SECIS variant libraries were designed with a mostly paired lower stem, so that randomization could be focused on the upper stem and loop regions. We identified 19 functional non-native SECIS sequences that violated the expected pairing requirements for the SECIS upper stem. All of the SECIS variants were shown to permit Sec insertion in phage (by chemical modification of the Sec residue) and fused to lacZα (by β-galactosidase assay). The diminished pairing of the upper stem appears to be mitigated by the overall stem stability; a given upper stem variant has significantly higher readthrough in the context of a paired, rather than unpaired, lower stem. These results suggest an unexpected downstream sequence flexibility in prokaryotic selenoprotein expression.  相似文献   

18.
In prokaryotes, the recoding of a UGA stop codon as a selenocysteine codon requires a special elongation factor (EF) SelB and a stem-loop structure within the mRNA called a selenocysteine insertion sequence (SECIS). Here, we used NMR spectroscopy to determine the solution structure of the SECIS mRNA hairpin and characterized its interaction with the mRNA-binding domain of SelB. Our structural and biochemical data identified the conserved structural features important for binding to EF SelB within different SECIS RNA sequences. In the free SECIS mRNA structure, conserved nucleotides are strongly exposed for recognition by SelB. Binding of the C-terminal domain of SelB stabilizes the RNA secondary structure. In the protein-RNA complex, a Watson-Crick loop base-pair leaves a GpU sequence accessible for SelB recognition. This GpU sequence at the tip of the capping tetraloop and a bulge uracil five Watson-Crick base-pairs apart from the GpU are essential for interaction with SelB.  相似文献   

19.
The UGA codon context of the Escherichia coli fdhF mRNA includes an element called the selenocysteine insertion sequence (SECIS) that is responsible for the UGA-directed incorporation of the amino acid selenocysteine into a protein. Here, we describe an extended fdhF SECIS that includes the information for an additional function: the prevention of UGA readthrough under conditions of selenium deficiency. This information is contained in a short mRNA region consisting of a single C residue adjacent to the UGA on its downstream side, and an additional segment consisting of the six nucleotides immediately upstream from it. These two regions act independently and additively, and probably through different mechanisms. The single C residue acts as itself; the upstream region acts at the level of the two amino acids, arginine and valine, for which it codes. These two codons at the 5' side of the UGA correspond to the ribosomal E and P sites. Here, we present a model for the E. coli fdhF SECIS as a multifunctional RNA structure containing three functional elements. Depending on the availability of selenium, the SECIS enables one of two alternatives for the translational machinery: either selenocysteine incorporation into a polypeptide or termination of the polypeptide chain.  相似文献   

20.
The anaerobe Eubacterium acidaminophilum has been shown to contain an uncharacterized peroxidase, which may serve to protect the sensitive selenoproteins in that organism. We purified this peroxidase and found that it was identical with the substrate-specific “protein B”-complex of glycine reductase. The “protein B”-complex consists of the selenocysteine-containing GrdB subunit and two subunits, which derive from the GrdE proprotein. The specific peroxidase activity was 1.7 U (mg protein)−1 with DTT and cumene hydroperoxide as substrates. Immunoprecipitation experiments revealed that GrdB was important for DTT- and NADH-dependent peroxidase activities in crude extracts, whereas the selenoperoxiredoxin PrxU could be depleted without affecting these peroxidase activities. GrdB could be heterologously produced in Escherichia coli with coexpression of selB and selC from E. acidaminophilum for selenocysteine insertion. Although GrdB was sensitive to proteolysis, some full-size protein was present which accounted for a peroxidase activity of about 0.5 U (mg protein)−1 in these extracts. Mutation of the potentially redox-active UxxCxxC motif in GrdB resulted in still significant, but decreased activity. Heterologous GrdB was protected from degradation by full-length GrdE or by GrdE-domains. The GrdB-GrdE interaction was confirmed by copurification of GrdE with Strep-tagged GrdB. The data suggest that GrdE domains serve to stabilise GrdB. Dedicated to Prof. Dr. Gerhard Gottschalk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号