首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Interleukin-13 (IL-13), a Th2 cytokine, plays a pivotal role in pathogenesis of bronchial asthma via IL-13 receptor alpha1 (IL-13Ralpha1) and IL-4 receptor alpha (IL-4Ralpha). Recent studies show that a decoy receptor for IL-13, namely IL-13Ralpha2, mitigates IL-13 signaling and function. This study provides evidence for regulation of IL-13Ralpha2 production and release and IL-13-dependent signaling by lysophosphatidic acid (LPA) in primary cultures of human bronchial epithelial cells (HBEpCs). LPA treatment of HBEpCs in at imedependent fashion increased IL-13Ralpha2 gene expression without altering the mRNA levels of IL-13Ralpha1 and IL-4Ralpha. Pretreatment with pertussis toxin (100 ng/ml, 4 h) or transfection of c-Jun small interference RNA or an inhibitor of JNK attenuated LPA-induced IL-13Ralpha2 gene expression and secretion of soluble IL-13Ralpha2. Overexpression of catalytically inactive mutants of phospholipase D (PLD) 1 or 2 attenuated LPA-induced IL-13Ralpha2 gene expression and protein secretion as well as phosphorylation of JNK. Pretreatment of HBEpCs with 1 microM LPA for 6 h attenuated IL-13-but not IL-4-induced phosphorylation of STAT6. Transfection of HBEpCs with IL-13Ralpha2 small interference RNA blocked the effect of LPA on IL-13-induced phosphorylation of STAT6. Furthermore, pretreatment with LPA (1 microM, 6 h) attenuated IL-13-induced eotaxin-1 and SOCS-1 gene expression. These results demonstrate that LPA induces IL-13Ralpha2 expression and release via PLD and JNK/AP-1 signal transduction and that pretreatment with LPA down-regulates IL-13 signaling in HBEpCs. Our data suggest a novel mechanism of regulation of IL-13Ralpha2 and IL-13 signaling that may be of physiological relevance to airway inflammation and remodeling.  相似文献   

2.
IL-4 is a key cytokine associated with allergy and asthma. Induction of cell signaling by IL-4 involves interaction with its cognate receptors, a complex of IL-4Ralpha with either the common gamma-chain or the IL-13R chain alpha1 (IL-13Ralpha1). We found that IL-4 bound to the extracellular domain of IL-4Ralpha (soluble human (sh)IL-4Ralpha) with high affinity and specificity. In contrast with the sequential mechanism of binding and stabilization afforded by IL-4Ralpha to the binding of IL-13 to IL-13Ralpha1, neither common gamma-chain nor IL-13Ralpha1 contributed significantly to the stabilization of the IL-4:IL-4Ralpha complex. Based on the different mechanisms of binding and stabilization of the IL-4R and IL-13R complexes, we compared the effects of shIL-4Ralpha and an IL-4 double mutein (R121D/Y124D, IL-4R antagonist) on IL-4- and IL-13-mediated responses. Whereas IL-4R antagonist blocked responses to both cytokines, shIL-4Ralpha only blocked IL-4. However, shIL-4Ralpha stabilized and augmented IL-13-mediated STAT6 activation and eotaxin production by primary human bronchial fibroblasts at suboptimal doses of IL-13. These data demonstrate that IL-4Ralpha plays a key role in the binding affinity of both IL-13R and IL-4R complexes. Under certain conditions, shIL-4Ralpha has the potential to stabilize binding IL-13 to its receptor to augment IL-13-mediated responses. Thus, complete understanding of the binding interactions between IL-4 and IL-13 and their cognate receptors may facilitate development of novel treatments for asthma that selectively target these cytokines without unpredicted or detrimental side effects.  相似文献   

3.
IL-13 is a central mediator of airway hyperresponsiveness and mucus expression, both hallmarks of asthma. IL-13 is found in the sputum of patients with asthma; therefore, IL-13 is an attractive drug target for treating asthma. We have shown previously that IL-13 inhibits Th17 cell production of IL-17A and IL-21 in vitro. Th17 cells are associated with autoimmune diseases, host immune responses, and severe asthma. In this study, we extend our in vitro findings and determine that IL-13 increases IL-10 production from Th17-polarized cells and that IL-13-induced IL-10 production negatively regulates the secretion of IL-17A and IL-21. To determine if IL-13 negatively regulates lung IL-17A expression via an IL-10-dependent mechanism in vivo, we used a model of respiratory syncytial virus (RSV) strain A2 infection in STAT1 knockout (KO) mice that increases lung IL-17A and IL-13 expression, cytokines not produced during RSV infection in wild-type mice. To test the hypothesis that IL-13 negatively regulates lung IL-17A expression, we created STAT1/IL-13 double KO (DKO) mice. We found that RSV-infected STAT1/IL-13 DKO mice had significantly greater lung IL-17A expression compared with that of STAT1 KO mice and that increased IL-17A expression was abrogated by anti-IL-10 Ab treatment. RSV-infected STAT1/IL-13 DKO mice also had increased neutrophil infiltration compared with that of RSV-infected STAT1 KO mice. Neutralizing IL-10 increased the infiltration of inflammatory cells into the lungs of STAT1 KO mice but not STAT1/IL-13 DKO mice. These findings are vital to understanding the potential side effects of therapeutics targeting IL-13. Inhibiting IL-13 may decrease IL-10 production and increase IL-17A production, thus potentiating IL-17A-associated diseases.  相似文献   

4.
IL-13 is a Th2-derived pleiotropic cytokine that recently was shown to be a key mediator of allergic asthma. IL-13 mediates its effects via a complex receptor system, which includes the IL-4R alpha-chain, IL-4Ralpha, and at least two other cell surface proteins, IL-13Ralpha1 and IL-13Ralpha2, which specifically bind IL-13. IL-13 has been reported to have very limited effects on mouse B cells. It was unclear whether this was due to a lack of receptor expression, a disproportionate relative expression of the receptor components, or an additional subunit requirement in B cells. To determine the requirements for IL-13 signaling in murine B cells, we examined IL-13-dependent Stat6 activation and CD23 induction in the murine B cell line, A201.1. A201.1 cells responded to murine IL-4 via the type I IL-4R, but were unresponsive to IL-13, and did not express IL-13 receptor. B220(+) splenocytes also failed to signal in response to IL-13 and did not express IL-13 receptor. We transfected A201.1 cells with human IL-4Ralpha, IL-13Ralpha1, or both. Transfectants expressing either human IL-4Ralpha or human IL-13Ralpha1 alone were unable to respond or signal to IL-13. Thus, human IL-13Ralpha1 could not combine with the endogenous murine IL-4Ralpha to generate a functional IL-13R. However, cells transfected with both human IL-4Ralpha and IL-13Ralpha1 responded to IL-13. Thus, the relative lack of IL-13 responsiveness in murine B cells is due to a lack of receptor expression. Furthermore, the heterodimeric interaction between IL-4Ralpha and IL-13Ralpha1 is species specific.  相似文献   

5.
6.
7.
The potent spasmogenic properties of IL-13 have identified this molecule as a potential regulator of airways hyperreactivity (AHR) in asthma. Although IL-13 is thought to primarily signal through the IL-13Ralpha1-IL-4Ralpha complex, the cellular and molecular components employed by this cytokine to induce AHR in the allergic lung have not been identified. By transferring OVA-specific CD4(+) T cells that were wild type (IL-13(+/+) T cells) or deficient in IL-13 (IL-13(-/-) T cells) to nonsensitized mice that were then challenged with OVA aerosol, we show that T cell-derived IL-13 plays a key role in regulating AHR, mucus hypersecretion, eotaxin production, and eosinophilia in the allergic lung. Moreover, IL-13(+/+) T cells induce these features (except mucus production) of allergic disease independently of the IL-4Ralpha chain. By contrast, IL-13(+/+) T cells did not induce disease in STAT6-deficient mice. This shows that IL-13 employs a novel component of the IL-13 receptor signaling system that involves STAT6, independently of the IL-4Ralpha chain, to modulate pathogenesis. We show that this novel pathway for IL-13 signaling is dependent on T cell activation in the lung and is critically linked to downstream effector pathways regulated by eotaxin and STAT6.  相似文献   

8.
Two interleukin 13 receptors (IL-13Rs) have been identified as IL-13Ralpha1 and IL-13Ralpha2. IL-13Ralpha1 is composed of a heterodimer consisting of IL-13Ralpha1 and IL-4 receptor alpha (IL-4Ralpha) as a signaling subunit. In contrast, IL-13Ralpha2 is known as a decoy receptor for IL-13. In this study, we investigated the expression of IL-13Rs on human fibroblasts. IL-13Ralpha2 was significantly up-regulated after stimulation with tumor necrosis factor-alpha (TNF-alpha) and/or IL-4. In contrast, IL-13Ralpha1 was constitutively detectable and was not up-regulated. After the induction of IL-13alpha2 by IL-4, STAT6 phosphorylation through IL-13Ralpha1 by IL-13 was inhibited. We also detected large intracellular pools of IL-13Ralpha2 in fibroblasts quantitatively. Furthermore, mobilization of the IL-13Ralpha2 protein stores from the cytoplasm to the cell surface was prevented by an inhibitor of protein transport, brefeldin-A. These results indicate that TNF-alpha and IL-4 synergistically up-regulate the expression of IL-13Ralpha2 decoy receptor on human fibroblasts by inducing gene expression and mobilizing intracellular receptors, and thus may down-regulate the IL-13 signaling.  相似文献   

9.
10.
IL-13 induces a STAT6-dependent hypercontractility of intestinal smooth muscle that is mediated by binding to the IL-13Ralpha1 component of the type 2 IL-4R that is linked to STAT6. IL-13 also binds to the IL-13Ralpha2 that is not linked to STAT6 and functions to limit the effects of IL-13 in vivo. In this study we assessed the contributions of regional and cellular differences in the distribution of the IL-13R components to the physiological regulation of smooth muscle function in wild-type mice and mice deficient in STAT6 or IL-13Ralpha2. The expression of IL-13 and IL-13Ralpha2 was higher in colon than in small intestine. Laser capture microdissection of specific cell types revealed that the expression of IL-13Ralpha2 was higher in the smooth muscle layer compared with levels in the epithelial cells of the mucosa. In contrast, there was a uniform distribution of IL-13alpha1 in smooth muscle, epithelia, and myenteric neurons. The significant hypercontractility of smooth muscle in mice deficient in IL-13Ralpha2, but not in STAT6, shows the physiological importance of IL-13 binding to IL-13Ralpha2. The pronounced differences in the expression of IL-13Ralpha2 suggest that the gut has developed sophisticated mechanisms for controlling the physiological and pathophysiological activities of IL-13.  相似文献   

11.
As interleukin (IL)-13 and IL-4 play a major role in various diseases including asthma, allergy, and malignancies, it is desirable to generate a molecule that blocks the effects of both cytokines. We previously generated a human IL-13 mutant (IL-13E13K), which is a powerful antagonist of IL-13, blocking the biological activities of IL-13. We now show that IL-13E13K also competitively inhibits signaling and biological activities of IL-4 through type II and partially through type III IL-4 receptor (R) system. IL-13E13K completely blocked the IL-4-induced phosphorylation of STAT6 and IL-4-dependent protein synthesis in cells expressing type II and partially type III IL-4R but not type I IL- 4R. Consistent with the inhibition of biological activities, IL-13E13K inhibited IL-4 binding to type II IL-4R-expressing cells but not to type I IL-4R-expressing cells. The inhibition efficiency of IL-4 binding by IL-13E13K was relatively lower compared to wtIL-13 even though IL-13E13K bound to IL-13Ralpha1 positive cells with a similar affinity to wtIL-13. These results indicate that Glu13 in IL-13 associates with IL-4Ralpha, and mutation to lysine decreases its binding ability to IL-4Ralpha chain. IL-13E13K binds to IL- 13Ralpha1, which is shared by both IL-13R and IL-4R systems. Consequently, IL-13E13K inhibits IL-4 binding to these cells and prevents heterodimer formation between IL-13Ralpha1 and IL-4Ralpha chains. This interference by IL-13E13K blocks the biological activities of not only IL-13 but also partially of IL-4. Thus, IL-13E13K may be a useful agent for the treatment of diseases such as asthma, allergic rhinitis, and cancer, which are dependent on signaling through both IL-4 and IL-13 receptors.  相似文献   

12.
Excessive mucus production is an important pathological feature of asthma. The Th2 cytokines IL-4 and IL-13 have both been implicated in allergen-induced mucus production, inflammation, and airway hyperreactivity. Both of these cytokines use receptors that contain the IL-4Ralpha subunit, and these receptors are expressed on many cell types in the lung. It has been difficult to determine whether allergen-induced mucus production is strictly dependent on direct effects of IL-4 and IL-13 on epithelial cells or whether other independent mechanisms exist. To address this question, we used a cell type-specific inducible gene-targeting strategy to selectively disrupt the IL-4Ralpha gene in Clara cells, an airway epithelial cell population that gives rise to mucus-producing goblet cells. Clara cell-specific IL-4Ralpha-deficient mice and control mice developed similar elevations in serum IgE levels, airway inflammatory cell numbers, Th2 cytokine production, and airway reactivity following OVA sensitization and challenge. However, compared with control mice, Clara cell-specific IL-4Ralpha-deficient mice were nearly completely protected from allergen-induced mucus production. Because only IL-13 and IL-4 are thought to signal via IL-4Ralpha, we conclude that direct effects of IL-4 and/or IL-13 on Clara cells are required for allergen-induced mucus production in the airway epithelium.  相似文献   

13.
IL-4 and IL-13 play key roles in Th2 immunity and asthma pathogenesis. Although the function of these cytokines is partially linked through their shared use of IL-4Ralpha for signaling, the interplay between these cytokines in the development of memory Th2 responses is not well delineated. In this investigation, we show that both IL-4 and IL-13 influence the maturation of dendritic cells (DC) in the lung and their ability to regulate secretion of IFN-gamma and Th2 cytokines by memory CD4(+) T cells. Cocultures of wild-type T cells with pulmonary DC from allergic, cytokine-deficient mice demonstrated that IL-4 enhanced the capacity of DC to stimulate T cell secretion of Th2 cytokines, whereas IL-13 enhanced the capacity of DC to suppress T cell secretion of IFN-gamma. Because IL-4Ralpha is critical for IL-4 and IL-13 signaling, we also determined how variants of IL-4Ralpha influenced immune cell function. T cells derived from allergic mice expressing a high-affinity IL-4Ralpha variant produced higher levels of IL-5 and IL-13 compared with T cells derived from allergic mice expressing a low-affinity IL-4Ralpha variant. Although DC expressing different IL-4Ralpha variants did not differ in their capacity to influence Th2 cytokine production, they varied in their capacity to inhibit IFN-gamma production by T cells. Thus, IL-4 and IL-13 differentially regulate DC function and the way these cells regulate T cells. The affinity of IL-4Ralpha also appears to be a determinant in the balance between Th2 and IFN-gamma responses and thus the severity of allergic disease.  相似文献   

14.
IL-13 is a critical cytokine at sites of Th2 inflammation. In these locations it mediates its effects via a receptor complex, which contains IL-4Ralpha and IL-13Ralpha1. A third, high-affinity IL-13 receptor, IL-13Ralpha2, also exists. Although it was initially felt to be a decoy receptor, this has not been formally demonstrated and the role(s) of this receptor has recently become controversial. To define the role(s) of IL-13Ralpha2 in IL-13-induced pulmonary inflammation and remodeling, we compared the effects of lung-targeted transgenic IL-13 in mice with wild-type and null IL-13Ralpha2 loci. We also investigated the effect of IL-13Ralpha2 deficiency on the OVA-induced inflammatory response. In this study, we show that in the absence of IL-13Ralpha2, IL-13-induced pulmonary inflammation, mucus metaplasia, subepithelial fibrosis, and airway remodeling are significantly augmented. These changes were accompanied by increased expression and production of chemokines, proteases, mucin genes, and TGF-beta1. Similarly, an enhanced inflammatory response was observed in an OVA-induced phenotype. In contrast, disruption of IL-13Ralpha2 had no effect on the tissue effects of lung-targeted transgenic IL-4. Thus, IL-13Ralpha2 is a selective and powerful inhibitor of IL-13-induced inflammatory, remodeling, and physiologic responses in the murine lung.  相似文献   

15.
Interleukin-4 (IL-4) and IL-13 are the only cytokines known to bind to the receptor chain IL-4Ralpha. Receptor sharing by these two cytokines is the molecular basis for their overlapping biological functions. Both are key factors in the development of allergic hypersensitivity, and they also play a major role in exacerbating allergic and asthmatic symptoms. Knowledge of structure and function of this system has allowed the development of inhibitors that block the interaction between the cytokines and their shared receptor. Mutational analysis of IL-4 has revealed variants with high-affinity binding to IL-4Ralpha but no detectable affinity for the second receptor subunit, which is either (gamma)c or IL-13Ralpha1. These IL-4 antagonists fail to induce signal transduction and block IL-4 and IL-13 effects in vitro. IL-4 antagonists prevent the development of allergic disease in vivo and an antagonistic variant of human IL-4 is now in clinical trials for asthma. Detailed knowledge of the site of interaction of IL-4 and IL-4Ralpha has been gained by structure analysis of the complex of these two proteins and through functional studies employing mutants of IL-4 and its receptor subunits. Based on these new data, the hitherto elusive goal of designing small molecular mimetics may be feasible.  相似文献   

16.
IL-13, a critical cytokine for allergic inflammation, exerts its effects through a complex receptor system including IL-4Ralpha, IL-13Ralpha1, and IL-13Ralpha2. IL-4Ralpha and IL-13Ralpha1 form a heterodimeric signaling receptor for IL-13. In contrast, IL-13Ralpha2 binds IL-13 with high affinity but does not signal. IL-13Ralpha2 exists on the cell surface, intracellularly, and in soluble form, but no information is available regarding the relative distributions of IL-13Ralpha2 among these compartments, whether the compartments communicate, and how the relative expression levels impact IL-13 responses. Herein, we investigated the distribution of IL-13Ralpha2 in transfected and primary cells, and we evaluated how the total level of IL-13Ralpha2 expression impacted its distribution. Our results demonstrate that the distribution of IL-13Ralpha2 is independent of the overall level of expression. The majority of the IL-13Ralpha2 protein existed in intracellular pools. Surface IL-13Ralpha2 was continually released into the medium in a soluble form, yet surface expression remained constant supporting receptor trafficking to the cell surface. IL-13Ralpha2 inhibited IL-13 signaling proportionally to its level of expression, and this inhibition could be overcome with high concentrations of IL-13.  相似文献   

17.
The chemokine thymus- and activation-regulated chemokine (TARC) induces selective migration of Th2, but not Th1, lymphocytes and is upregulated in the airways of asthmatic patients. The purpose of this study was to determine whether human airway smooth muscle (HASM) cells produce TARC. Neither IL-4, IL-13, IL-1beta, IFN-gamma, nor TNF-alpha alone stimulated TARC release into the supernatant of cultured HASM cells. However, both IL-4 and IL-13 increased TARC protein and mRNA expression when administered in combination with TNF-alpha but not IL-1beta or IFN-gamma. Macrophage-derived chemokine was not expressed under any of these conditions. TARC release induced by TNF-alpha + IL-13 or TNF-alpha + IL-4 was inhibited by the beta-agonist isoproterenol and by other agents that activate protein kinase A, but not by dexamethasone. To determine whether polymorphisms of the IL-4Ralpha have an impact on the ability of IL-13 or IL-4 to induce TARC release, HASM cells from multiple donors were genotyped for the Ile50Val, Ser478Pro, and Gln551Arg polymorphisms of the IL-4Ralpha. Our data indicate that cells expressing the Val50/Pro478/Arg551 haplotype had significantly greater IL-13- or IL-4-induced TARC release than cells with other IL-4Ralpha genotypes. These data indicate that Th2 cytokines enhance TARC expression in HASM cells in an IL-4Ralpha genotype-dependent fashion and suggest that airway smooth muscle cells participate in a positive feedback loop that promotes the recruitment of Th2 cells into asthmatic airways.  相似文献   

18.
19.
IL-13 is a Th2-derived cytokine associated with pathological changes in asthma and ulcerative colitis. Moreover, it plays a major role in the control of gut nematode infection and associated immunopathology. The current paradigm is that these effects are due to T cell-derived IL-13. We show in this study that an innate source of IL-13, the intraepithelial NK cell, is responsible for the disruption of intestinal tissue architecture and induction of goblet cell hyperplasia that characterizes infection with the intestinal helminth Trichinella spiralis. IL-13 or IL-4Ralpha (but not IL-4) null mice failed to induce intestinal pathology. Unexpectedly, SCID and athymic mice developed the same pathology found in immunocompetent mice following infection. Moreover, immunodeficient mice expressed IL-13 in the intestine, and abnormal mucosal pathology was reduced by in vivo administration of a soluble IL-13 antagonist. IL-13 expression was induced in non-T intraepithelial CD3- NK cells. Epithelial cells expressed the IL-13 signaling receptor, IL-13Ralpha1, and after infection, IL-4Ralpha. Furthermore, the soluble IL-13 decoy receptor IL-13Ralpha2, which regulates IL-13 responses, was also induced upon infection. These data provide the first evidence that intestinal tissue restructuring during helminth infection is an innate event dependent on IL-13 production by NK cells resident in the epithelium of the intestine.  相似文献   

20.
In sensitized individuals, exposure to allergens such as Dermatophagoides pteronyssinus (Der p) causes Th2 polarization and release of cytokines, including IL-4 and IL-13. Because Der p extracts also have direct effects on epithelial cells, we hypothesized that allergen augments the effects of Th2 cytokines by promoting mediator release from the bronchial epithelium in allergic asthma. To test our hypothesis, primary bronchial epithelial cultures were grown from bronchial brushings of normal and atopic asthmatic subjects. RT-PCR showed that each culture expressed IL-4R(alpha), common gamma-chain, and IL-13R(alpha)(1), as well as IL-13R(alpha)(2), which negatively regulates IL-13 signaling; FACS analysis confirmed IL-13R(alpha)(2) protein expression. Exposure of epithelial cultures to either Der p extracts, TNF-alpha, IL-4, or IL-13 enhanced GM-CSF and IL-8 release, and this was partially suppressible by corticosteroids. Simultaneous exposure of the epithelial cultures to IL-4 or IL-13 together with Der p resulted in a further increase in cytokine release, which was at least additive. Release of TGF-alpha was also increased by TNF-alpha and combinations of IL-4, IL-13, and Der p; however, this stimulation was only significant in the asthma-derived cultures. These data suggest that, in an allergic environment, Th2 cytokines and allergen have the potential to sustain airway inflammation through a cooperative effect on cytokine release by the bronchial epithelium. Our novel finding that IL-4, IL-13, and allergen enhance release of TGF-alpha, a ligand for the epidermal growth factor receptor that stimulates fibroblast proliferation and goblet cell differentiation, provides a potential link between allergen exposure, Th2 cytokines, and airway remodelling in asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号