首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ethylene binding sites in higher plants   总被引:1,自引:0,他引:1  
A review of work carried out on ethylene binding in higher plants is presented. The use of radio-labelled displacement assays has identified specific 14C-ethylene binding in all tissues so far studied. virtually all higher plants studied contain at least two classes of ethylene binding site, one of which fully associates and dissociates in about 2 h and a class of sites that takes up to 20 h to become fully saturated. Although the types of site differ in their rate constants of association they have similar and high affinities for ethylene.A series of Arabidopsis thaliana mutants shown to vary in sensitivity to ethylene have been analysed for 14C-ethylene binding. One mutant, eti 5, which was shown to be unaffected by ethylene concentrations of up to 10,000 L L–1 was also shown to exhibit reduced binding. In vivo and in vitro studies on pea have shown that ethylene binding can be detected in this tissue. In vitro studies have shown that both membrane and cytosolic fractions contain measurable amounts of ethylene binding. Interestingly, cytosolic ethylene binding consisted only of the fast associating/dissociating type.Developing cotyledons of Phaseolus vulgaris contain a higher concentration of ethylene binding sites that other tissues and only contain the slow dissociating component. These facets have allowed the purification of ethylene binding protein(s) (EBP) from this tissue. The proteins which bind ethylene can be resolved into two bands of 26 and 28 kDa on semi-denaturing PAGE and the proteins appear to be single entities on a 2-D gels.Data will be presented which indicate a possible role for heterotrimetric G-proteins in the early stages of the ethylene signal transduction pathway.  相似文献   

2.
3.
Ethylene as a modulator of disease resistance in plants   总被引:1,自引:0,他引:1  
The role of ethylene in the hormonal regulation of plant development has been well established. In addition, it has been implicated in biotic stress, both as a virulence factor of fungal and bacterial pathogens and as a signaling compound in disease resistance. This apparent discrepancy has stimulated research on the effects of various types of pathogens on mutant and transgenic plants that are impaired in ethylene production or perception. It has become clear that ethylene differentially affects resistance against pathogens with different lifestyles and plays an important role in mediating different types of induced resistance.  相似文献   

4.
Accumulation of the gaseous plant hormone ethylene is very importantfor the induction of several responses of plants to flooding.However, little is known about the role of this gas in the formationof flooding-induced adventitious roots. Formation of adventitiousroots in Rumex species is an adaptation of these plants to floodedsoil conditions. The large air-spaces in these roots enablesdiffusion of gases between shoot and roots. Application of ethylene to non-flooded Rumex plants resultedin the formation of adventitious roots. In R. palustris Sm.shoot elongation and epinasty were also observed. The numberof roots in R. thyrsiflorus Fingerh. was much lower than inR. palustris, which corresponds with the inherent differencein root forming capacity between these two species. Ethyleneconcentrations of 1.5–2µI I– 1 induced a maximumnumber of roots in both species. Quantification of ethylene escaping from root systems of Rumexplants that were de-submerged after a 24 h submergence periodshowed that average ethylene concentrations in submerged rootsreached 1.8 and 9.1 µl I–1 in R. palustris and R.thyrsiflorus, respectively. Inhibition of ethylene productionin R. palustris by L--(2-aminoethoxyvinyl)-glycine (AVG) or-aminobutyric acid (AIB) decreased the number of adventitiousroots induced by flooding, indicating that high ethylene concentrationsmay be a prerequisite for the flooding-induced formation ofadventitious roots in Rumex species. Key words: Adventitious roots, epinasty, ethylene, flooding, Rumex, shoot elongation  相似文献   

5.
Distorted phytochrome action spectra in green plants   总被引:6,自引:0,他引:6  
A. M. Jose  E. Schäfer 《Planta》1978,139(1):25-28
An evaluation was made of the extent which a Münch-type pressure flow mechanism (i.e., osmotically-generated pressure flow) might contribute to phloem transport in soybean. Estimates of sucrose concentrations in source (leaf) and sink (root) sieve tubes were obtained by a negativestaining procedure. Water potential measurements of the leaf and of the nutrient solution allowed calculation of the turgor pressures in source and sink sieve tubes. The turgor difference between source and sink sieve tubes was compared to that required to drive translocation at the observed velocity between the source and sink, as measured by [14C] photosynthate movement. Sieve-tube conductivity was calculated from the sieve-tube dimensions, assuming an essentially unobstructed pathway. In three experiments, the sucrose concentration was consistently higher in source sieve tubes (an average of 11.5%) than in sink sieve tubes (an average of 5.3%). The ratio of these values (2.3:1) agreed reasonably well with an earlier ratio for source/sink sieve tube concentrations of 1.8:1, obtained by quantitative microautoradiography. The resulting calculated turgor difference (an average of 4.1 bars) was adequate to drive a pressure flow mechanism at the observed translocation velocities (calculated to require a turgor difference of 1.2 to 4.6 bars). No other force need be presumed to be involved.This work was presented in part at a joint U.S.-Australian Conference on Transport and Transfer Processes in Plants, Canberra, Australia, December 15–20, 1975; see Fisher (1976)  相似文献   

6.
7.
BACKGROUND AND AIMS: Exposure of plants to ethylene can influence a spectrum of developmental processes including organ senescence and abscission. The aim of this study was to examine the role of the gaseous regulator in Nicotiana sylvestris plants exhibiting a silenced or constitutive ethylene response. METHODS: Transgenic N. sylvestris plants were generated that either ectopically expressed the Arabidopsis mutant ethylene receptor ETR1-1 or the tomato EIN3-like (LeEIL1) gene. Highly expressing homozygous lines were selected and the time-course of development, from germination to organ senescence, was studied. KEY RESULTS: Fifty percent of the homozygous Pro(35S):ETR1-1 lines examined showed a high susceptibility to collapse prior to flowering, with plant death occurring within a few days of leaf wilting. The time-course of leaf senescence in the remaining Pro(35S):ETR1-1 lines was visibly arrested compared to wild type (negative segregant) plants and this observation was reaffirmed by chlorophyll and protein analysis. Petal necrosis was also delayed in Pro(35S):ETR1-1 lines and corolla abscission did not take place. When senescence of Pro(35S):ETR1-1 plants did take place this was accompanied by leaf bleaching, but tissues remained fully turgid and showed no signs of collapse. A single Pro(35S):LeEIL1 line was found to exhibit consistently accelerated leaf and flower senescence and precocious flower bud shedding. CONCLUSIONS: These observations support a role for ethylene in regulating a spectrum of developmental events associated with organ senescence and tissue necrosis. Furthermore, the transgenic lines generated during this study may provide a valuable resource for exploring how senescence processes are regulated in plants.  相似文献   

8.
9.
Roux SJ 《Bioscience》1984,34(1):25-29
Red light initiates many important morphogenetic responses in plants through the mediation of the pigment, phytochrome. How phytochrome promotes photomorphogenesis is unknown. The evidence that photoactivated phytochrome initiates calcium fluxes in cells is reviewed and how these fluxes could regulate several known red-light induced effects in plants is discussed.  相似文献   

10.
Herbivory-induced signalling in plants: perception and action   总被引:1,自引:0,他引:1  
Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses.  相似文献   

11.
The signaling role of action potential (AP) in higher plants is considered. The principles underlying realization of this role and the significance of AP-induced short-term effector response are discussed. The notion is put forward that the effect of propagating AP on plant cells is similar to nonspecific component of the cell functional response to external stimuli.  相似文献   

12.
13.
The year 2012 marks the 150th anniversary of the publication of Charles Darwin's first botanical book, on the fertilization of orchids (1862), wherein he described pollen grains and outlined his evolutionary principles with respect to plant research. Five decades later, the growth-promoting effect of extracts of Orchid pollen on coleoptile elongation was documented. These studies led to the discovery of a new class of phytohormones, the brassinosteroids (BRs) that were isolated from rapeseed (Brassica napus) pollen. These growth-promoting steroids, which regulate height, fertility, and seed-filling in crop plants such as rice (Oryza sativa), also induce stress- and disease resistance in green algae and angiosperms. The origin and current status of BR-research is described here, with reference to BR-action and -signal transduction, and it is shown that modern high-yield rice varieties with erect leaves are deficient in endogenous BRs. Since brassinosteroids induce pathogen resistance in rice plants and hence can suppress rice blast- and bacterial blight-diseases, genetic manipulation of BR-biosynthesis or -perception may be a means to increase crop production. Basic research on BR activity in plants, such as Arabidopsis and rice, has the potential to increase crop yields further as part of a 21th century 'green biotech-revolution' that can be traced back to Darwin's classical breeding experiments. It is concluded that 'Nothing in brassinosteroid research makes sense except in the light of Darwinian evolution' and the value of basic science is highlighted, with reference to the genetic engineering of better food crops that may become resistant to a variety of plant diseases.  相似文献   

14.
15.
The action of tentoxin on membrane processes in plants   总被引:3,自引:0,他引:3  
Tentoxin, a fungal phytotoxin, with its complex mode of action on plant membrane processes, is currently the best known example of a phytotoxic substance, with the literature going back more than 20 years and including a number of conflicting reports, which have not yet been adequately reconciled. This minireview covers all effects of tentoxin obtained at different levels of organization in several plant species (chloroplast structure and function, stomatal movements and guard cell protoplasts, leaf and root plasmalemma, ion uptake and translocation and internal ion concentrations) and suggests a number of targets for tentoxin which merit investigation. Besides the demonstration of the complexity of phytotoxin action and its possible relationship with other signal exchange mechanisms operating between microorganisms and plants, tentoxin may also provide a valuable tool for obtaining further information about the regulation of ion transport in plants.  相似文献   

16.
17.
18.
Inhibitory effect of clove oil on Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Shigella dysenteriae and Candida albicans was detected. Mint ether oil had the high antibacterial action on S. aureus, however against other microorganisms mint oil had a reliably low effect then clove oil. Fennel oil had high antibacterial effect on C. albicans, and bactericidal action on S. typhimurium and S. dysenteriae.  相似文献   

19.
Mechanical perturbations, in the form of either rubbing or wounding, cause ethylene evolution from bean internodes ( Phaseolus vulgaris L. cv. Cherokee Wax). This evolution begins 45 to 60 min after perturbation or wounding and peaks about 2 h later. Maximal thigmomorphogenesis occurs if internodes are perturbed when they are 10 mm or less in length. Maximal ethylene evolution, however, occurs in longer internodes. When one internode is perturbed, ethylene evolution is not observed from other internodes even though they respond thigmomorphogenetically by exhibiting decreased elongation. Ethylene evolution is apparently a result of increased 1-amino-cyclopropane-1-carboxylic acid (ACC) production after perturbation. Inhibitors of ACC and ethylene synthesis block increased radial growth but not reduced elongation. Ethylene may therefore be only one of several factors causing thigmomorphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号