首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞内质网上的肌醇1,4,5-三磷酸受体(inositol 1,4,5-trisphosphate receptors, IP3Rs)是调节Ca~(2+)释放的重要离子通道。Ca~(2+)稳态是维持机体细胞生理功能的重要基础,Ca~(2+)信号参与酶激活、囊泡释放和细胞凋亡等多种细胞过程。研究表明,Ca~(2+)信号异常与阿尔茨海默病(Alzheimer's disease, AD)密切相关,神经元中钙信号异常可以导致细胞稳态失衡、突触功能丧失,甚至细胞死亡。现对IP3Rs的生物特性及其介导的Ca~(2+)释放在阿尔茨海默病发生发展过程中的作用进行综述。  相似文献   

2.
细胞核内钙离子浓度的增加可以引起包括钙离子激活的基因转录在内的很多生理功能.运用Western blot、免疫荧光、实时定量聚合酶链反应、钙成像以及外源三磷酸腺苷刺激细胞释放钙离子等试验方法,发现1,4,5-三磷酸肌醇受体和内质网蛋白44(ERp44)在内质网和核膜上都有很好的共定位.外源三磷酸腺苷可以通过1,4,5-三磷酸肌醇受体刺激核内钙瞬变并磷酸化环磷酸腺苷反应原件结合蛋白(CREB)、刺激原癌基因c-Myc的表达.但是,这些功能都能被1,4,5-三磷酸肌醇受体抑制剂2-氨乙氧基二苯酯硼酸(2-APB)和过表达内质网蛋白44(ERp44)所抑制.这些结果均提示在子宫颈癌HeLa细胞中内质网蛋白44(ERp44)通过1,4,5-三磷酸肌醇受体而介导基因转录.  相似文献   

3.
目的:观察IP3Rs(1,4,5三磷酸肌醇受体)在GC-2std(GC-2)细胞中的表达情况并探讨IP3Rs在GC-2细胞增殖中的作用.方法:用RT-PCR检测IP3Rs在GC-2细胞以及在小鼠大脑,心肌,骨骼肌及睾丸中的分布情况.免疫荧光法检测IP3Rs在细胞中的分布及表达;MTT法检测不同浓度2-APB(IP3Rs拮抗剂)的作用下,IP3Rs对细胞增殖的影响,利用流式细胞术检测2-APB对细胞周期的影响.结果:IP3Rs的三种亚型在GC-2细胞中均有表达且在小鼠大脑、心肌、骨骼肌、睾丸等多种组织中广泛分布;免疫荧光实验亦表明IP3Rs分布于胞膜、胞质及核内.相差显微镜下观察,发现2-APB处理组比对照组细胞数量少.MTT实验结果亦表明:随着2-APB浓度的增加(5、25、100、200、400 uM),其吸光值呈浓度依赖性的减小,经统计学分析:25 uM浓度组即具有显著性差异(P<0.05)且EC50=92.0114.流式细胞结果显示:与对照组比较,100uM 2-APB处理组细胞处于S期、G2期的数目增多.结论:IP3Rs在GC-2细胞及小鼠多种组织中表达,与细胞的增殖密切相关,可能与其参与调节细胞周期有关.  相似文献   

4.
含FYVE结构的磷酸肌醇3-磷酸5-激酶(FYVE domain-containing phosphatidylinositol 3-phosphate5-kinase,PIKfyve)是哺乳动物体内的一种磷脂酰肌醇脂质激酶。PIKfyve通过催化磷脂酰肌醇-3-磷酸[phosphatidylinositol 3-phosphate,PtdIns(3)P]生成磷脂酰肌醇-3,5-二磷酸[phosphatidylinositol-3,5-bisphosphate,PtdIns(3,5)P2]或磷脂酰肌醇-5-磷酸[phosphatidylinositol-5-phosphate,PtdIns(5)P],在调节膜运输以及维持溶酶体功能中发挥关键作用,还参与内体转运、转录调控和免疫调节等重要细胞生物学功能。近年来的研究表明,PIKfyve在炎症、病原微生物感染、神经退行性疾病和肿瘤的发生发展中起重要作用,可作为潜在的疾病防治靶点。本文就PIKfyve的生化特点、生物学功能及其在相关疾病中发挥的作用研究进展进行综述。  相似文献   

5.
microRNA是一类长约22个核苷酸的非编码RNA,广泛参与神经发育、组织分化和神经突触形成等多种生命进程。认知与神经发育、组织分化和神经突触形成关系密切。因此microRNA在认知功能改变这一病理生理过程中起到非常重要的作用。本文将从microRNA在神经发育、突触形成、在神经退行性疾病和术后认知功能障碍发病机理中的作用等方面作一综述。  相似文献   

6.
突触可塑性是学习与记忆的分子机制之一。表观遗传调控在突触可塑性过程中起着重要作用。通过组蛋白去乙酰化酶和组蛋白乙酰化酶对组蛋白进行修饰是其中一种主要方式。组蛋白乙酰化修饰可以激活转录、活化相应位点和信号分子,影响突触可塑性。组蛋白去乙酰化酶抑制剂在治疗神经退行性疾病的过程中,发现可以增强突触可塑性,改善记忆损伤。因此,现就组蛋白去乙酰化酶在突触可塑性中的作用机制及其与相关神经退行性疾病发生发展的联系进行综述。  相似文献   

7.
5-焦磷酸-五磷酸肌醇(5-IP7)是一种进化上保守的小分子代谢物,其作用模式尚不清楚.该研究揭示5-IP7通过介导突触结合蛋白-7(Syt7)依赖性胰岛素释放的副交感刺激信号参与葡萄糖稳态的神经调控.迷走神经刺激通过毒蕈碱乙酰胆碱受体-Gαq-PLC-PKC/PKD磷酸化激活5-IP7的合成酶IP6K1.5-IP7及...  相似文献   

8.
肌醇磷酸脂代谢的中间产物1,4,5-三磷酸肌醇在细胞内外的信号转换系统中起着重要的媒介作用。各种不以cAMP 为第二信使的细胞外激动剂作用于靶细胞的相应受体时,首先激活细胞膜上特异的磷脂酶C,使4,5-二磷酸磷脂酰肌醇水解,释出1,4,5-三磷酸肌醇,后者进一步使细胞内Ca~(2 )贮释放,从而激活钙/钙调蛋白系统,引起细胞的各种生理效应。  相似文献   

9.
细胞外Ca2+对爪蟾脑片神经元微抑制性突触后电流的调制   总被引:2,自引:0,他引:2  
Wang H  Cai HR 《生理学报》2003,55(5):599-606
应用盲法膜片钳全细胞记录技术,以爪蟾视顶盖神经元微抑制性突触后电流(miniature inhibitory postsyn-aptic currents,mIPSCs)为指标,观察了细胞外Ca^2 对爪蟾脑片神经元突触后mIPSC的调制。结果表明:用细胞外无钙或无钙含乙二醇双乙胺醚-N,N′-四乙酸(EGTA)(200nmol/L—2mmol/L)溶液灌流,均可使mIPSCs的发放频率降低;非特异性钙离子拮抗剂氯化铬(100μmol/L)也可使mIPSCs的频率降低;内质网钙泵抑制剂thapsigargin(TG)以及内质网ryanodine受体(RyR)激动剂ryanodine均可使mIPSCs频率升高,内质网RyR拮抗剂普鲁卡因则可降低mIPSCs的频率;磷脂酶C抑制剂U73122也可降低mIPSCs的频率,对三磷酸肌醇(inositol 1,4,5-triphosphate,IP3)水平有抑制作用的咖啡因亦可显著地降低mIPSCs,甚至完全抑制mIPSCs。从而表明:对突触前神经元及其末梢,细胞外钙离子可通过细胞膜上的钙通道进入细胞内,使细胞内钙浓度升高,突触前神经末梢释放出更多的神经递质。进而可能使突触后mIPSCs的频率增加;突触前细胞内钙储池上的Rya和IP3R均可介导钙从其中释放,并也可使突触前细胞内的钙离子浓度升高,进而可能使突触后mIPSCs的发放频率增加。  相似文献   

10.
方伟岗  王文京 《生理学报》1993,45(4):311-316
本实验研究了凝血酶抑制CHP-100原始神经外胚叶瘤细胞神经分化的信号传导机制。凝血酶能抑制CHP-100细胞在无血清培养中神经突起的生长,这种作用与凝血酶激活细胞内磷酸肌醇/钙离子信号传导途径有关。凝血酶明显刺激Ins(1,4,5)P3的产生及细胞内游离钙离子浓度的升高。凝血酶的抑制剂水蛭素能抑制凝血酶引起的钙离子反应,并能拮抗凝血酶抑制CHP-100细胞神经突起生长的作用。结果提示,凝血酶信号传导系统可能在神经系统生长发育中具有重要调节作用。  相似文献   

11.
赵梦圆  张勇  刘翠华 《微生物学报》2021,61(5):1073-1090
神经退行性疾病以突触丢失和神经元死亡为特征,表现为认知功能下降、痴呆和运动功能丧失.流行病学和实验证据提示:慢性细菌、病毒和真菌感染可能是导致神经退行性疾病如阿尔兹海默症(AD)、帕金森病(PD)、肌萎缩性侧索硬化症(ALS)和多发性硬化症(MS)等的危险因素.病原体在中枢神经系统的持续感染可导致一系列细胞生物学功能的...  相似文献   

12.
O-连接乙酰葡糖胺(O-GlcNAc)糖基化转移酶Ogt催化的O-GlcNAc糖基化修饰是一种重要的翻译后修饰形式. O-GlcNAc糖基化修饰通过调控蛋白质的功能而参与了多种生物学过程,并与多种疾病密切相关. O-GlcNAc修饰广泛存在于神经系统中,并在发育和衰老过程中表现出动态变化.既往研究表明, O-GlcNAc修饰对胚胎和成体神经发生,神经元的成熟、存活、突触发育和小鼠的认知能力等都发挥重要的调控作用.在多种神经发育和退行性疾病中,许多关键蛋白的O-GlcNAc修饰水平表现出显著改变.本文综述了O-GlcNAc糖基化修饰在神经发育和神经系统疾病中作用和分子机制的研究进展.  相似文献   

13.
发育中脑惊厥性损伤与海马Zn2+转移   总被引:10,自引:0,他引:10  
Ni H 《生理科学进展》2006,37(4):331-334
Zn^2+是一种新的调节神经系统兴奋毒性损伤的离子型介质。积聚于海马苔藓纤维(MF)通路突触前膜囊泡内的Zn^2+,通过特定的自稳态机制向突触后神经元转运,以此实现对大脑兴奋-抑制平衡和认知功能的调节作用。发育中长程或反复惊厥造成海马MF通路Zn^2+的自稳态破坏,Zn^2+在细胞内和突触间发生异常转移,并有再生性发芽等病理损伤现象。Zn^2+转运体、Ca^2+通透性α-氨基-3-羧基-5-甲基异恶唑-4-丙酸(AMPA)/红藻氨酸通道(Ca-A/K通道)、金属结合蛋白和线粒体等共同参与发芽过程中Zn^2+的异常转移。除此之外,Zn^2+亦可作为神经调质,激活信号转导通路,对突触的功能或可塑性产生微妙的影响。这一独特的离子型跨突触信使作用可能具有重要的生理和病理意义。  相似文献   

14.
大电导钙激活电压门控型钾离子通道(BKCa通道)广泛分布于各种组织中,主要由胞内钙离子浓度增加和细胞膜去极化而激活.此外多种膜脂,如脂肪酸、胆固醇、鞘糖脂等可修饰该通道的功能.该通道参与细胞内信号转导、细胞的兴奋及代谢调节等多种生理过程,其功能异常牵涉到特发性癫痫、高血压等疾病的发生.因而对BKCa通道功能的调节作用的研究具有重要的生理学及病理学意义.文章将主要介绍膜脂对BKCa通道功能的调节作用.  相似文献   

15.
可溶性和脂质状态的磷酸肌醇在真核细胞中广泛存在,它们在细胞的发育和生物学功能中起到重要作用。其中,六磷酸肌醇激酶(inositol hexaphosphate kinases,IP6Ks)是焦磷酸肌醇合成的限速酶,它可以在肌醇环第一位、第三位或第五位已有的磷酸基团上再加一个磷酸基团合成焦磷酸肌醇,例如5-焦磷酸–五磷酸肌醇(5-pyrophosphate inositol pentaphosphate,IP_7、PP-IP_5)和1,3-二焦磷酸肌醇–四磷酸(bis-diphosphoinositol tetrakisphosphate,IP_8、[PP]_2-IP_4)。IP6Ks通过以上过程在DNA修复、染色体重组、细胞死亡、凝血作用、造血调控、免疫调控、癌症进展等方面发挥作用,因而受到越来越多的重视。该文基于近期IP6Ks的相关研究进展,就IP6Ks在细胞功能调控以及疾病治疗中的作用作一综述。  相似文献   

16.
Cai F  Zeng XR  Yang Y  Liu ZF  Li ML  Zhou W  Pei J 《生理学报》2005,57(3):303-309
应用膜片钳单通道电流记录技术,研究三磷酸肌醇(trisphosphateinositol,IP3)对猪冠状动脉平滑肌细胞大电导钙激活钾通道(large-conductanceCa2+-activatedpotassiumchannels,BKchannels)的作用。结果显示:在内面向外式(inside-out)膜片下,IP3(10~50μmol/L)可以浓度依赖性地增加通道的开放概率,而对电流幅值无明显影响,开放概率的增加是通过明显缩短平均关闭时间实现的(n=11,P<0.01);洗去药物后通道活性可以恢复到对照水平;IP3对通道的激活作用不随时间而衰减;IP3的降解产物对通道没有明显的激活作用。结果表明:在inside-out膜片下,IP3能够激活猪冠状动脉平滑肌细胞BK通道。  相似文献   

17.
CHIP属于连接酶类,具有E3泛素连接酶活性,参与能量代谢途径和新陈代谢。包括阿尔茨海默病(Alzheimer'sdisease,AD)、帕金森病(Parkinson'sdisease,PD)、亨廷顿病(Huntington'sdisease,HD)等在内的神经退行性疾病的主要病理学特征之一——细胞中异常蛋白的聚集,如tau蛋白和α-突触核蛋白等,副监护子CHIP与分子伴侣,如Hsc70/Hsp70、Hsp90等相互作用对这些异常蛋白的产生具有调节作用。最近研究表明,CHIP改变了Hsc70和Hsp90介导调节的信号通路中蛋白折叠和降解的平衡,参与细胞内蛋白质的质量控制;Hsp70/CHIP伴侣系统在tau蛋白生物学和tau蛋白病理学机制中具有重要作用;CHIP可以作为α-突触核蛋白蛋白酶体降解途径和溶酶体降解途径的分子开关。这些研究进展对于进一步揭示神经退行性疾病的发病机制和研制新一代治疗药物具有重要的作用。  相似文献   

18.
溶酶体离子通道蛋白异常引起溶酶体功能障碍是导致阿尔茨海默病(Alzheimer’s disease,AD)和帕金森病(Parkinson’s disease,PD)等神经退行性疾病的重要因素.溶酶体离子通道蛋白调节溶酶体内离子稳态、溶酶体膜电压以及溶酶体的酸度.溶酶体离子通道蛋白的结构或功能缺陷会引起溶酶体降解功能障碍,导致神经退行性疾病的发生发展.在这篇综述中,我们总结了各种离子通道蛋白调节溶酶体功能的过程及机制,以及离子通道蛋白异常参与神经退行性疾病的过程和机制.调节离子通道蛋白改善溶酶体的功能、促进异常聚集蛋白的清除,是神经退行性疾病治疗的潜在途径.  相似文献   

19.
转录激活因子4(ATF4)属于碱性亮氨酸拉链结构域蛋白中的ATF/CREB转录因子家族,ATF4在脑内广泛表达,在应激、痛觉、突触可塑性和神经退行性变等中发挥重要作用。学习与记忆是脑的高级功能之一,学习是获取新信息的过程,记忆是将信息进行编码、储存及提取的过程,二者被认为是认知活动的基础。突触可塑性是突触在形态、结构和功能上的可变性和可修饰性,与神经系统的发育和学习记忆等脑的高级功能密切相关。突触可塑性的长时程增强和长时程抑制是学习和记忆形成的基础。近年来研究发现, ATF4与突触可塑性和学习记忆密切相关,其在神经退行性变、脑损伤和药物成瘾等疾病中扮演重要角色,有必要深入理解ATF4在学习记忆障碍相关疾病中发挥的作用,为相关疾病的治疗提供新靶点。  相似文献   

20.
为研究急性酶分离的猪冠状动脉平滑肌细胞自发性瞬时外向电流(spontaneous transient outward currents, STOCs)的基本特性及其调节, 采用全细胞穿孔膜片钳技术记录STOCs的变化. 结果发现, STOCs具有明显的电压依赖性, 随机地叠加在全细胞大电导钙激活钾通道(large Ca2+-activated-K+ channels, BKCa)电流上, BKCa通道的特异性阻断剂卡律蝎毒素(charybdotoxin, ChTX) 200 nmol/L可完全抑制STOCs的活性. 逐步降低细胞外Ca2+浓度可明显抑制STOCs活性直至完全消失, 而钙离子载体A23187(10 μmol/L)可明显增强STOCs的活性. L型电压依赖性钙通道(L-type voltage-dependent calcium channels, L-VDCCs)阻断剂维拉帕米(20 μmol/L)和氯化镉(200 μmol/L)对STOCs的活性却没有明显影响. 兰诺定受体(ryanodine receptors, RyRs)的特异性激动剂咖啡因(5 mmol/L)能够明显激活STOCs, 而其阻断剂兰诺定(ryanodine, 50 μmol/L)却可以使其不可逆性完全抑制; 随后再应用咖啡因(5 mmol/L)不能再次激活STOCs. 三磷酸肌醇受体(inositol 1,4,5-trisphosphate receptors, IP3Rs)阻断剂2APB(40 μmol/L)也可明显抑制STOCs的活性, 继而使用咖啡因(5 mmol/L)仍可激活STOCs. 结果表明: 猪冠状动脉平滑肌细胞的STOCs是由BKCa通道介导的, 细胞外Ca2+对于STOCs的产生是必需的, 而L-VDCCs介导的Ca2+内流不影响STOCs的活性, RyRs是STOCs产生的最终通路, IP3Rs也可能参与了STOCs的调控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号