首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we investigated 124 stinkbug species representing 20 families and 5 superfamilies for their Burkholderia gut symbionts, of which 39 species representing 6 families of the superfamilies Lygaeoidea and Coreoidea were Burkholderia-positive. Diagnostic PCR surveys revealed high frequencies of Burkholderia infection in natural populations of the stinkbugs, and substantial absence of vertical transmission of Burkholderia infection to their eggs. In situ hybridization confirmed localization of the Burkholderia in their midgut crypts. In the lygaeoid and coreoid stinkbugs, development of midgut crypts in their alimentary tract was coincident with the Burkholderia infection, suggesting that the specialized morphological configuration is pivotal for establishment and maintenance of the symbiotic association. The Burkholderia symbionts were easily isolated as pure culture on standard microbiological media, indicating the ability of the gut symbionts to survive outside the host insects. Molecular phylogenetic analysis showed that the gut symbionts of the lygaeoid and coreoid stinkbugs belong to a β-proteobacterial clade together with Burkholderia isolates from soil environments and Burkholderia species that induce plant galls. On the phylogeny, the stinkbug-associated, environmental and gall-forming Burkholderia strains did not form coherent groups, indicating host–symbiont promiscuity among these stinkbugs. Symbiont culturing revealed that slightly different Burkholderia genotypes often coexist in the same insects, which is also suggestive of host–symbiont promiscuity. All these results strongly suggest an ancient but promiscuous host–symbiont relationship between the lygaeoid/coreoid stinkbugs and the Burkholderia gut symbionts. Possible mechanisms as to how the environmentally transmitted promiscuous symbiotic association has been stably maintained in the evolutionary course are discussed.  相似文献   

2.
The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects.  相似文献   

3.
Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host''s control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study.  相似文献   

4.
The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis.  相似文献   

5.
《Journal of Asia》2020,23(4):1089-1095
Because environments are full of diverse microorganisms including parasites and pathogens, how to select and maintain a beneficial microbial partner is a critical issue for host organisms. The bean bug Riptortus pedestris (Heteroptera: Alydidae) acquires a specific gut symbiont, Burkholderia insecticola, from environmental soil in the second instar stage and houses it in a crypt-bearing midgut region called M4. To sort the Burkholderia symbiont from a wide variety of soil microbes, R. pedestris develops a specialized organ named “constricted region (CR)”. The CR, located in front of the crypt-bearing symbiotic region, is immediately closed after colonization of M4 by the Burkholderia symbiont to block any contamination of microbes ingested with food. By using a food coloring and a red fluorescent protein (RFP)-expressing Burkholderia symbiont, we here revealed that the closed CR is re-opened at a later developmental stage of R. pedestris. Although the CR was re-opened at the late phase of the fifth instar, oral administration of food coloring and green fluorescent protein (GFP)-expressing symbiont demonstrated that ingested food and bacteria were stopped at the M4B despite the opened CR. Observations using confocal microscopy revealed reverse flow of gut content from M4 to M3 through the opened CR, the flow pressure of which seemed to prevent any contamination of the symbiotic M4 region. The morphological change of the CR with aging may cause a risk of contamination, but another mechanism, the reverse flow, plausibly maintains the specificity of gut symbiont in R. pedestris.  相似文献   

6.
The bean bug Riptortus pedestris is specifically associated with the Burkholderia gut symbiont and acquires the symbiont from the environment every generation. Here, we investigated the infective dose of the symbiont by experimental administration. The 50% infective dose was remarkably low, only 80 cells, indicating efficient colonization of the symbiont.  相似文献   

7.
Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion‐resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free‐living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion‐degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion‐treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 106/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using Vmax and Km values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont‐mediated insecticide resistance.  相似文献   

8.
The broad-headed bug Riptortus clavatus (Heteroptera: Alydidae) possesses a number of crypts at a posterior midgut region, which house a dense population of a bacterial symbiont belonging to the genus Burkholderia. Although the symbiont is highly prevalent (95 to 100%) in the host populations, the symbiont phylogeny did not reflect the host systematics at all. In order to understand the mechanisms underlying the promiscuous host-symbiont relationship despite the specific and prevalent association, we investigated the transmission mode and the fitness effects of the Burkholderia symbiont in R. clavatus. Inspection of eggs and a series of rearing experiments revealed that the symbiont is not vertically transmitted but is environmentally acquired by nymphal insects. The Burkholderia symbiont was present in the soil of the insect habitat, and a culture strain of the symbiont was successfully isolated from the insect midgut. Rearing experiments by using sterilized soybean bottles demonstrated that the cultured symbiont is able to establish a normal and efficient infection in the host insect, and the symbiont infection significantly improves the host fitness. These results indicated that R. clavatus postnatally acquires symbiont of a beneficial nature from the environment every generation, uncovering a previously unknown pathway through which a highly specific insect-microbe association is maintained. We suggest that the stinkbug-Burkholderia relationship may be regarded as an insect analogue of the well-known symbioses between plants and soil-associated microbes, such as legume-Rhizobium and alder-Frankia relationships, and we discuss the evolutionary relevance of the mutualistic but promiscuous insect-microbe association.  相似文献   

9.
The house fly, Musca domestica L., is an important ectoparasite with the ability to develop resistance to insecticides used for their control. Thiamethoxam, a neonicotinoid, is a relatively new insecticide and effectively used against house flies with a few reports of resistance around the globe. To understand the status of resistance to thiamethoxam, eight adult house fly strains were evaluated under laboratory conditions. In addition, to assess the risks of resistance development, cross-resistance potential and possible biochemical mechanisms, a field strain of house flies was selected with thiamethoxam in the laboratory. The results revealed that the field strains showed varying level of resistance to thiamethoxam with resistance ratios (RR) at LC50 ranged from 7.66-20.13 folds. Continuous selection of the field strain (Thia-SEL) for five generations increased the RR from initial 7.66 fold to 33.59 fold. However, resistance declined significantly when the Thia-SEL strain reared for the next five generations without exposure to thiamethoxam. Compared to the laboratory susceptible reference strain (Lab-susceptible), the Thia-SEL strain showed cross-resistance to imidacloprid. Synergism tests revealed that S,S,S-tributylphosphorotrithioate (DEF) and piperonyl butoxide (PBO) produced synergism of thiamethoxam effects in the Thia-SEL strain (2.94 and 5.00 fold, respectively). In addition, biochemical analyses revealed that the activities of carboxylesterase (CarE) and mixed function oxidase (MFO) in the Thia-SEL strain were significantly higher than the Lab-susceptible strain. It seems that metabolic detoxification by CarE and MFO was a major mechanism for thiamethoxam resistance in the Thia-SEL strain of house flies. The results could be helpful in the future to develop an improved control strategy against house flies.  相似文献   

10.
《Journal of Asia》2020,23(4):1055-1061
The dusky cotton bug (DCB), Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae) is one of the most important pests of cotton. Fipronil belongs to phenylpyrazole and is being used against various insect pests. To reduce the resistance to this insecticide, the present study was planned to examine the inheritance mode and preliminary mechanism of resistance to fipronil in DCB. A fipronil selected strain had a 9855-fold level of resistance after 11 generations of selection with fipronil. The median lethal concentration of reciprocal crosses F1 (Fipro-Sel.♂×Lab-Pop♀) and F1-(Fipro-Sel.♀× Lab-Pop♂) showed no significant difference and degree of dominance values were 0.60 and 0.58 for F1 and F1-), respectively, suggesting autosomal and incompletely dominance of resistance to fipronil in fipronil selected strain of DCB. Monogenic model of inheritance revealed polygenic resistance to fipronil. Realized heritability (h2) value was 0.24 for fipronil resistance. The study of synergism indicated that PBO (Piperonyl butoxide) and DEF (S, S-butyl phosphorotrithioateases) did not enhance the toxicity of fipronil on both populations.The study on inheritance mode of fipronil resistance in DCB may help delay the resistance with insecticides.  相似文献   

11.
Two full-length genes encoding different acetylcholinesterases (AChEs), designated as Ch-ace1 and Ch-ace2, were cloned from strains of the rice stem borer (Chilo suppressalis) susceptible and resistant to the organophosphate insecticide triazophos. Sequence analysis found an amino acid mutation A314S in Ch-ace1 (corresponding to A201 in Torpedo californica AChE) that was consistently associated with the occurrence of resistance. This mutation removed an MspA1 I restriction site from the wild type allele. An assay based on restriction fragment length polymorphism (RFLP) analysis was developed to diagnose A314S genotypes in field populations. Results showed a strong correlation between frequencies of the mutation and phenotypic levels of resistance to triazophos. The assay offers a prospect for rapid monitoring of resistance and assisting with the appropriate choice of insecticide for combating damage caused by C. suppressalis.  相似文献   

12.
The damage caused by stink bugs that feed on agricultural crops accounts for such significant losses that transgenic plant resistance to stink bugs would be highly desirable. As the level of toxicity of the Bacillus thuringiensis-derived, ETX/Mtx2 pesticidal protein Mpp83Aa1 is insufficient for practical use against the southern green stink bug Nezara viridula, we employed two disparate approaches to isolate peptides NvBP1 and ABP5 that bind to specific proteins (alpha amylase and aminopeptidase N respectively) on the surface of the N. viridula gut. Incorporation of these peptides into Mpp83Aa1 provided artificial anchors resulting in increased gut binding, and enhanced toxicity. These peptide-modified pesticidal proteins with increased toxicity provide a key advance for potential future use against N. viridula when delivered by transgenic plants to mitigate economic loss associated with this important pest.  相似文献   

13.
14.

Background

Insect midgut microbiota is important in host nutrition, development and immune response. Recent studies indicate possible links between insect gut microbiota and resistance to biological and chemical toxins. Studies of this phenomenon and symbionts in general have been hampered by difficulties in culture-based approach. In the present study, DNA sequencing was used to examine the midgut microbiota of diamondback moth (DBM), Plutella xylostella (L.), a destructive pest that attacks cruciferous crops worldwide. Its ability to develop resistance to many types of synthetic insecticide and even Bacillus thuringiensis toxins makes it an important species to study.

Methodology/Principal Findings

Bacteria of the DBM larval midgut in a susceptible and two insecticide (chlorpyrifos and fipronil) resistant lines were examined by Illumina sequencing sampled from an insect generation that was not exposed to insecticide. This revealed that more than 97% of the bacteria were from three orders: Enterobacteriales, Vibrionales and Lactobacillales. Both insecticide-resistant lines had more Lactobacillales and the much scarcer taxa Pseudomonadales and Xanthomonadales with fewer Enterobacteriales compared with the susceptible strain. Consistent with this, a second study observed an increase in the proportion of Lactobacillales in the midgut of DBM individuals from a generation treated with insecticides.

Conclusions/Significance

This is the first report of high-throughput DNA sequencing of the entire microbiota of DBM. It reveals differences related to inter- and intra-generational exposure to insecticides. Differences in the midgut microbiota among susceptible and insecticide-resistant lines are independent of insecticide exposure in the sampled generations. While this is consistent with the hypothesis that Lactobacillales or other scarcer taxa play a role in conferring DBM insecticide resistance, further studies are necessary to rule out other possibilities. Findings constitute the basis for future molecular work on the functions of insect midgut microbiota taxa and their possible role in conferring host resistance to toxins.  相似文献   

15.
Burkholderia strains are promising candidates for biotechnological applications. Unfortunately, most of these strains belong to species of the Burkholderia cepacia complex (Bcc) involved in human infections, hampering potential applications. Novel diazotrophic Burkholderia species, phylogenetically distant from the Bcc species, have been discovered recently, but their environmental distribution and relevant features for agro-biotechnological applications are little known. In this work, the occurrence of N2-fixing Burkholderia species in the rhizospheres and rhizoplanes of tomato plants field grown in Mexico was assessed. The results revealed a high level of diversity of diazotrophic Burkholderia species, including B. unamae, B. xenovorans, B. tropica, and two other unknown species, one of them phylogenetically closely related to B. kururiensis. These N2-fixing Burkholderia species exhibited activities involved in bioremediation, plant growth promotion, or biological control in vitro. Remarkably, B. unamae and B. kururiensis grew with aromatic compounds (phenol and benzene) as carbon sources, and the presence of aromatic oxygenase genes was confirmed in both species. The rhizospheric and endophyte nature of B. unamae and its ability to degrade aromatic compounds suggest that it could be used in rhizoremediation and for improvement of phytoremediation. B. kururiensis and other Burkholderia sp. strains grew with toluene. B. unamae and B. xenovorans exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase activity, and the occurrence of acdS genes encoding ACC deaminase was confirmed. Mineral phosphate solubilization through organic acid production appears to be the mechanism used by most diazotrophic Burkholderia species, but in B. tropica, there presumably exists an additional unknown mechanism. Most of the diazotrophic Burkholderia species produced hydroxamate-type siderophores. Certainly, the N2-fixing Burkholderia species associated with plants have great potential for agro-biotechnological applications.  相似文献   

16.
17.
The Riptortus-Burkholderia symbiotic system is an experimental model system for studying the molecular mechanisms of an insect-microbe gut symbiosis. When the symbiotic midgut of Riptortus pedestris was investigated by light and transmission electron microscopy, the lumens of the midgut crypts that harbor colonizing Burkholderia symbionts were occupied by an extracellular matrix consisting of polysaccharides. This observation prompted us to search for symbiont genes involved in the induction of biofilm formation and to examine whether the biofilms are necessary for the symbiont to establish a successful symbiotic association with the host. To answer these questions, we focused on purN and purT, which independently catalyze the same step of bacterial purine biosynthesis. When we disrupted purN and purT in the Burkholderia symbiont, the ΔpurN and ΔpurT mutants grew normally, and only the ΔpurT mutant failed to form biofilms. Notably, the ΔpurT mutant exhibited a significantly lower level of cyclic-di-GMP (c-di-GMP) than the wild type and the ΔpurN mutant, suggesting involvement of the secondary messenger c-di-GMP in the defect of biofilm formation in the ΔpurT mutant, which might operate via impaired purine biosynthesis. The host insects infected with the ΔpurT mutant exhibited a lower infection density, slower growth, and lighter body weight than the host insects infected with the wild type and the ΔpurN mutant. These results show that the function of purT of the gut symbiont is important for the persistence of the insect gut symbiont, suggesting the intricate biological relevance of purine biosynthesis, biofilm formation, and symbiosis.  相似文献   

18.
Marine algae are rich sources ofbioactive compounds capable of harboring secondary metabolites which are structurally and biologically active. In our study, the methanolic extract of marine algae Caulerpa racemosa (green algae) was employed to determine the antibacterial and larvicidal activity. The antibacterial activity showed effective inhibition against five pathogenic bacteria. A significant zone size of 16 mm was observed for Pseudomonas aeruginosa. The methanolic extract of Caulerpa racemosa showed effective larvicidal activity against Culex tritaeniorhynchus and the histopathological studies revealed the rupture in mid gut of larvae. The bioactive compounds in the crude extract were further identified as 2-(-3-bromo-1-adamantyl) acetic acid methyl ester and Chola-5, 22- dien-3-ol by GC-MS. Hence the bioactive compounds obtained from the methanolic extracts could be used for the bactericidal and larvicidal activity which will overcome the harmful impact of synthetic insecticide on environment.  相似文献   

19.
In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed based on the 16S rRNA gene sequence and were evaluated in PCRs performed with genomic DNAs from Burkholderia and non-Burkholderia species as the templates. The primer system used exhibited good specificity and sensitivity for the majority of established species of the genus Burkholderia. DGGE analyses of the PCR products obtained showed that there were sufficient differences in migration behavior to distinguish the majority of the 14 Burkholderia species tested. Sequence analysis of amplicons generated with soil DNA exclusively revealed sequences affiliated with sequences of Burkholderia species, demonstrating that the PCR-DGGE method is suitable for studying the diversity of this genus in natural settings. A PCR-DGGE analysis of the Burkholderia communities in two grassland plots revealed differences in diversity mainly between bulk and rhizosphere soil samples; the communities in the latter samples produced more complex patterns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号