首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThis study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm.Materials and methodNinety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms.ResultsThe relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively.ConclusionThis study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.  相似文献   

2.
PurposeRadiation therapy plans are assessed using dose volume metrics derived from clinical toxicity and outcome data. In this study, plans for patients with locally advanced non-small cell lung cancer (LA-NSCLC) are examined in the context of the implementation of the Acuros XB (AXB) dose calculation algorithm focussing on the impact on common metrics. Methods: Volumetric modulated arc therapy (VMAT) plans were generated for twenty patients, using the Analytical Anisotropic Algorithm (AAA) and recalculated with AXB for both dose to water (Dw) and dose to medium (Dm). Standard dose volume histogram (DVH) metrics for both targets and organs-at-risk (OARs) were extracted, in addition to tumour control probability (TCP) for targets. Results: Mean dose to the planning target volume (PTV) was not clinically different between the algorithms (within ±1.1 Gy) but differences were seen in the minimum dose, D99% and D98% as well as for conformity and homogeneity metrics. A difference in TCP was seen for AXBDm plans versus both AXBDw and AAA plans. No clinically relevant differences were seen in the lung metrics. For point doses to spinal cord and oesophagus, the AXBDm values were lower than AXBDw, by up to 1.0 Gy. Conclusion: Normalisation of plans to the mean/median dose to the target does not need to be adjusted when moving from AAA to AXB. OAR point doses may decrease by up to 1 Gy with AXBDm, which can be accounted for in clinical planning. Other OAR metrics do not need to be adjusted.  相似文献   

3.
4.
PurposeTo verify lung stereotactic body radiotherapy (SBRT) plans using a secondary treatment planning system (TPS) as an independent method of verification and to define tolerance levels (TLs) in lung SBRT between the primary and secondary TPSs.MethodsA total of 147 lung SBRT plans calculated using X-ray voxel Monte Carlo (XVMC) were exported from iPlan to Eclipse in DICOM format. Dose distributions were recalculated using the Acuros XB (AXB) and the anisotropic analytical algorithm (AAA), while maintaining monitor units (MUs) and the beam arrangement. Dose to isocenter and dose-volumetric parameters, such as D2, D50, D95 and D98, were evaluated for each patient. The TLs of all parameters between XVMC and AXB (TLAXB) and between XVMC and AAA (TLAAA) were calculated as the mean ± 1.96 standard deviations.ResultsAXB values agreed with XVMC values within 3.5% for all dosimetric parameters in all patients. By contrast, AAA sometimes calculated a 10% higher dose in PTV D95 and D98 than XVMC. The TLAXB and TLAAA of the dose to isocenter were −0.3 ± 1.4% and 0.6 ± 2.9%, respectively. Those of D95 were 1.3 ± 1.8% and 1.7 ± 3.6%, respectively.ConclusionsThis study quantitatively demonstrated that the dosimetric performance of AXB is almost equal to that of XVMC, compared with that of AAA. Therefore, AXB is a more appropriate algorithm for an independent verification method for XVMC.  相似文献   

5.
BackgroundAcuros XB (AXB) may predict better rectal toxicities and treatment outcomes in cervix carcinoma. The aim of the study was to quantify the potential impact of AXB computations on the cervix radiotherapy using the RapidArc (RA ) technique as compared to anisotropic analytical algorithm (AA) computations.Materials and methodsA cohort of 30 patients previously cared for cervix carcinoma (stages II–IIIB) was selected for the present analysis. The RA plans were computed using AA and AXB dose computation engines under identical beam setup and MLC pattern.ResultsThere was no significant (p > 0.05) difference in D95% and D98% to the planning target volume (PTV); moreover, a significant (p < 0.05) rise was noticed for mean dose to the PTV (0.26%), D50% (0.26%), D2% (0.80%) and V110% (44.24%) for AXB computation as compared to AA computations. Further, AXB estimated a significantly (p < 0.05) lower value for maximum and minimum dose to the PTV. Additionally, there was a significant (p < 0.05) reduction observed in mean dose to organs at risk (OARs) for AXB computation as compared to AA, though the reduction in mean dose was non-significant (p > 0.05) for the rectum. The maximum difference observed was 4.78% for the rectum V50Gy, 1.72%, 1.15% in mean dose and 2.22%, 1.48% in D2% of the left femur and right femur, respectively, between AA and AXB dose estimations.ConclusionFor similar target coverage, there were significant differences observed between the AAA and AXB computations. AA underestimates the V50Gy of the rectum and overestimates the mean dose and D2% for femoral heads as compared to AXB. Therefore, the use of AXB in the case of cervix carcinoma may predict better rectal toxicities and treatment outcomes in cervix carcinoma using the RA technique.  相似文献   

6.
PurposeTo investigate the dosimetric impact between the anisotropic analytical algorithm (AAA) and the Acuros XB (AXB) algorithm in volumetric-modulated arc therapy (VMAT) plans for high-grade glioma (HGG).MethodsWe used a heterogeneous phantom to quantify the agreement between the measured and calculated doses from the AAA and from the AXB. We then analyzed 14 patients with HGG treated by VMAT, using the AAA. We newly created AXB plans for each corresponding AAA plan under the following conditions: (1) re-calculation for the same number of monitor units with an identical beam and leaf setup, and (2) re-optimization under the same conditions of dose constraints. The dose coverage for the planning target volume (PTV) was evaluated by dividing the coverage into the skull, air, and soft-tissue regions.ResultsCompared to the results obtained with the AAA, the AXB results were in good agreement with the measured profiles. The dose differences in the PTV between the AAA and re-calculated AXB plans were large in the skull region contained in the target. The dose difference in the PTV in both types of plan was significantly correlated with the volume of the skull contained in the target (r = 0.71, p = 0.0042). A re-optimized AXB plan's dose difference was lower vs. the re-calculated AXB plan's.ConclusionsWe observed dose differences between the AAA and AXB plans, in particular in the cases in which the skull region of the target was large. Considering the phantom measurement results, the AXB algorithm should be used in VMAT plans for HGG.  相似文献   

7.
AimThis study compared volumetric-modulated arc therapy (VMAT) plans for head and neck cancers with and without an external body contour extended technique (EBCT).BackgroundDose calculation algorisms for VMAT have limitations in the buildup region.Materials and methodsThree VMAT plans were enrolled, with one case having a metal artifact from an artificial tooth. The proper dose was calculated using Eclipse version 11.0. The body contours were extended 2 cm outward from the skin surface in three-dimensional space, and the dose was recalculated with an anisotropic analytical algorithm (AAA) and Acuros XB (AXB). Monitor units (MUs) were set, and the dose distributions in the planning target volume (PTV), clinical target volume, and organ at risk (OAR) and conformity index (CI) with and without an EBCT were compared. The influence of a metal artifact outside of the thermoplastic head mask was also compared.ResultsThe coverage of PTV by the 95% dose line near the patient’s skin was increased drastically by using an EBCT. Plan renormalization had a negligible impact on MUs and doses delivered to OARs. CI of PTV with a 6-MV photon beam was closer to 1 than that with a 10-MV photon beam when both AAA and AXB were used in all cases. Metal artifacts outside the head mask had no effect on dose distribution.ConclusionsAn EBCT is needed to estimate the proper dose at object volumes near the patient’s skin and can improve the accuracy of the calculated dose at target volumes.  相似文献   

8.
BackgroundThis study presents a retrospective analysis (efficacy and toxicity) of outcomes in patients with unresectable recurrence of previously irradiated head and neck (H&N) cancers treated with proton therapy. Locoregional recurrence is the main pattern of failure in the treatment of H&N cancers. Proton re-irradiation in patients with relapse after prior radiotherapy might be valid as promising as a challenging treatment option.Materials and methodsFrom November 2015 to January 2020, 30 patients with in-field recurrence of head and neck cancer, who were not suitable for surgery due to medical contraindications, tumor localization, or extent, received re-irradiation with intensity-modulated proton therapy (IMPT). Sites of retreatment included the aerodigestive tract (60%) and the base of skull (40%). The median total dose of prior radiotherapy was 55.0 Gy. The median time to the second course was 38 months. The median re-irradiated tumor volume was 158.1 cm3. Patients were treated with 2.0, 2.4, and 3.0 GyRBE per fraction, with a median equivalent dose (EQD2) of 57.6 Gy (α/β = 10). Radiation-induced toxicity was recorded according to the RTOG/EORTC criteria.ResultsThe 1- and 2-year local control (LC), progression-free survival (PFS), and overall survival (OS) were 52.6/21.0, 21.9/10.9, and 73.4/8.4%, respectively, with a median follow-up time of 21 months. The median overall survival was 16 months. Acute grade 3 toxicity was observed in one patient (3.3%). There were five late severe side effects (16.6%), with one death associated with re-irradiation.ConclusionRe-irradiation with a proton beam can be considered a safe and efficient treatment even for a group of patients with unresectable recurrent H&N cancers.  相似文献   

9.
AimTo investigate the impact of Acuros XB (AXB) algorithm in the deep-inspiration breath-hold (DIBH) technique used for treatment of left sided breast cancer.BackgroundAXB may estimate better lung toxicities and treatment outcome in DIBH.Materials and MethodsTreatment plans were computed using the field-in-field technique for a 6 MV beam in two respiratory phases - free breathing (FB) and DIBH. The AXB-calculations were performed under identical beam setup and the same numbers of monitor units as used for AAA-calculation.ResultsMean Hounsfield units (HU), mass density (g/cc) and relative electron density were -782.1 ± 24.8 and -883.5 ± 24.9; 0.196 ± 0.025 and 0.083 ± 0.032; 0.218 ± 0.025 and 0.117 ± 0.025 for the lung in the FB and DIBH respiratory phase, respectively. For a similar target coverage (p > 0.05) in the DIBH respiratory phase between the AXB and AAA algorithm, there was a slight increase in organ at risk (OAR) dose for AXB in comparison to AAA, except for mean dose to the ipsilateral lung. AAA predicts higher mean dose to the ipsilateral lung and lesser V20Gy for the ipsilateral and common lung in comparison to AXB. The differences in mean dose to the ipsilateral lung were 0.87 ± 2.66 % (p > 0.05) in FB, and 1.01 ± 1.07% (p < 0.05) in DIBH, in V20Gy the differences were 1.76 ± 0.83% and 1.71 ± 0.82% in FB (p < 0.05), 3.34 ± 1.15 % and 3.24 ± 1.17 % in DIBH (p < 0.05), for the ipsilateral and common lung, respectively.ConclusionFor a similar target volume coverage, there were important differences between the AXB and AAA algorithm for low-density inhomogeneity medium present in the DIBH respiratory phase for left sided breast cancer patients. DIBH treatment in conjunction with AXB may result in better estimation of lung toxicities and treatment outcome.  相似文献   

10.
BackgroundThe dosimetric characterization of volumetric modulated arc therapy (VMAT)-based total-body irradiation (TBI) in pediatric patients is evaluated.Materials and methodsTwenty-two patients between the ages of 2 and 12 years were enrolled for VMAT-based TBI from 2018 to 2020. Three isocenters were irradiated over three overlapping arcs. While prescribing 90% of the TBI dose to the planning treatment volume (PTV), two fractions (2 Gy each) were delivered each day; hence 12 Gy was delivered in six fractions. During treatment optimization, the mean lung and kidney doses were set not to exceed 7 Gy and 7.5 Gy, respectively. The maximum lens dose was also set to less than 4 Gy. Patient quality assurance was carried out by comparing treatment planning system doses to the 3-dimensional measured doses by the ArcCHECK® detector. The electronic portal imaging device (EPID) gamma indices were also obtained.ResultsThe average mean lung dose was 7.75 ± 0.18 Gy, mean kidney dose 7.63 ± 0.26 Gy, maximum lens dose 4.41 ± 0.39 Gy, and the mean PTV dose 12.69 ± 0.16 Gy. The average PTV heterogeneity index was 1.15 ± 0.03. Average differences in mean kidney dose, mean lung dose, and mean target dose were 2.79% ± 0.88, 0.84% ± 0.45 and 0.93% ± 0.47, respectively; when comparing planned and ArcCHECK® measured doses. Only grade 1–2 radiation toxicities were recorded, based on CTCAE v5.0 scoring criteria.ConclusionsVMAT-TBI was characterized with good PTV coverage, homogeneous dose distribution, planned and measured dose agreement, and low toxicity.  相似文献   

11.
PurposeTo increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT).MethodsTI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose.ResultsHI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses.ConclusionOur proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.  相似文献   

12.
PurposeTo investigate the dosimetric accuracy of synthetic computed tomography (sCT) images generated by a clinically-ready voxel-based MRI simulation package, and to develop a simple and feasible method to improve the accuracy.Methods20 patients with brain tumor were selected to undergo CT and MRI simulation. sCT images were generated by a clinical MRI simulation package. The discrepancy between planning CT and sCT in CT number and body contour were evaluated. To resolve the discrepancies, an sCT specific CT-relative electron density (RED) calibration curve was used, and a layer of pseudo-skin was created on the sCT. The dosimetric impact of these discrepancies, and the improvement brought about by the modifications, were evaluated by a planning study. Volumetric modulated arc therapy (VMAT) treatment plans for each patient were created and optimized on the planning CT, which were then transferred to the original sCT and the modified-sCT for dose re-calculation. Dosimetric comparisons and gamma analysis between the calculated doses in different images were performed.ResultsThe average gamma passing rate with 1%/1 mm criteria was only 70.8% for the comparison of dose distribution between planning CT and original sCT. The mean dose difference between the planning CT and the original sCT were −1.2% for PTV D95 and −1.7% for PTV Dmax, while the mean dose difference was within 0.7 Gy for all relevant OARs. After applying the modifications on the sCT, the average gamma passing rate was increased to 92.2%. Mean dose difference in PTV D95 and Dmax were reduced to −0.1% and −0.3% respectively. The mean dose difference was within 0.2 Gy for all OAR structures and no statistically significant difference were found.ConclusionsThe modified-sCT demonstrated improved dosimetric agreement with the planning CT. These results indicated the overall dosimetric accuracy and practicality of this improved MR-based treatment planning method.  相似文献   

13.
AimTo validate the Acuros®XB (AXB) dose calculation algorithm for a 6 MV beam from the Varian TrueBeam treatment units.BackgroundCurrently Anisotropic Analytic Algorithm (AAA) is clinically used on authors’ department but AXB could replace it for VMAT treatments in regions where inhomogeneities and free air are present.Materials and methodsTwo steps are followed in the validation process of a new dose calculation algorithm. The first is to check the accuracy of algorithm for a homogenous phantom and regular fields. Multiple fields of increasing complexity have been acquired using a MapCheck diode array. The accuracy of the algorithm was evaluated using the gamma analysis method. The second is to validate the algorithm in the presence of heterogeneous media. Planar absolute dose was measured with GafChromic®EBT2 film and was compared with the dose calculated by AXB. Gamma analysis was performed between MapCheck measurements and AXB dose calculations, at a range of clinical source-surface distance.ResultsFor SSDs ranging from 80 to 100 cm, the results show a minimum pass rate of 95% between AXB and MapCheck acquisition. For open 6 MV photon beam interacting with a phantom with an air gap, the agreement after the air gap between AXB and GafChromic®EBT2 is less than 1% in the 3 × 3cm2 field and less than 2% in the 10 × 10 cm2 field.ConclusionsAXB has advanced modelling of lateral electron transport that enables a more accurate dose calculation in heterogeneous regions and, compared with AAA, improves accuracy between different density interfaces. This will be of particular benefit for head/neck treatments.  相似文献   

14.
PurposeTo assess the potential of cone beam CT (CBCT) derived adaptive RapidArc treatment for esophageal cancers in reducing the dose to organs at risk (OAR).Methods and materialsTen patients with esophageal cancer were CT scanned in free breathing pattern. The PTV is generated by adding a 3D margin of 1 cm to the CTV as per ICRU 62 recommendations. The double arc RapidArc plan (Clin_RA) was generated for the PTV. Patients were setup using kV orthogonal images and kV-CBCT scan was acquired daily during first week of therapy, then weekly. These images were exported to the Eclipse TPS. The adaptive CTV which includes tumor and involved nodes was delineated in each CBCT image set for the length of the PTV. The composite CTV from first week CBCT was generated using Boolean union operator and 5 mm margin was added circumferentially to generate adaptive PTV (PTV1). Adaptive RapidArc plan (Adap_RA) was generated. NTCP and DVH of the OARs of the two plans were compared. Similarly, PTV2 was generated from weekly CBCT. PTV2 was evaluated for the coverage of 95% isodose of Adap_RA plan.ResultsThe PTV1 and PTV2 volumes covered by 95% isodose in adaptive plans were 93.51 ± 1.17% and 94.59 ± 1.43% respectively. The lung V10Gy, V20Gy and mean dose in Adap_RA plan was reduced by 17.43% (p = 0.0012), 34.64% (p = 0.0019) and 16.50% (p = 0.0002) respectively compared to Clin_RA. The Adap_RA plan reduces the heart D35% and mean dose by 17.35% (p = 0.0011) and 17.16% (p = 0.0012). No significant reduction in spinal cord and liver doses were observed. NTCP for the lung (0.42% vs. 0.08%) and heart (1.39% vs. 0.090%) was reduced significantly in adaptive plans.ConclusionThe adaptive re-planning strategy based on the first week CBCT dataset significantly reduces the doses and NTCP to OARs.  相似文献   

15.
BackgroundThis analysis evaluates the impacts of biologically effective dose (BED) and histology on local control (LC) of spinal metastases treated with highly conformal radiotherapy to moderately-escalated doses.Materials and methodsPatients were treated at two institutions from 2010–2020. Treatments with less than 5 Gy per fraction or 8 Gy in 1 fraction were excluded. The dataset was divided into three RPA classes predictive of survival (1). The primary endpoint was LC.Results223 patients with 248 treatments met inclusion criteria. Patients had a median Karnofsky Performance Status (KPS ) of 80, and common histologies included breast (29.4%), non-small cell lung cancer (15.7%), and prostate (13.3%). A median 24 Gy was delivered in 3 fractions (BED: 38.4 Gy) to a median planning target volume (PTV) of 37.3 cc. 2-year LC was 75.7%, and 2-year OS was 42.1%. Increased BED was predictive of improved LC for primary prostate cancer (HR = 0.85, 95% CI: 0.74–0.99). Patients with favorable survival (RPA class 1) had improved LC with BED ≥ 40 Gy (p = 0.05), unlike the intermediate and poor survival groups. No grade 3–5 toxicities were reported.ConclusionsModerately-escalated treatments were efficacious and well-tolerated. BED ≥ 40 Gy may improve LC, particularly for prostate cancer and patients with favorable survival.  相似文献   

16.
PurposeEvaluating performance of modern dose calculation algorithms in SBRT and locally advanced lung cancer radiotherapy in free breathing (FB) and deep inspiration breath hold (DIBH).MethodsFor 17 patients with early stage and 17 with locally advanced lung cancer, a plan in FB and in DIBH were generated with Anisotropic Analytical Algorithm (AAA). Plans for early stage were 3D-conformal SBRT, 45 Gy in 3 fractions, prescribed to 95% isodose covering 95% of PTV and aiming for 140% dose centrally in the tumour. Locally advanced plans were volumetric modulated arc therapy, 66 Gy in 33 fractions, prescribed to mean PTV dose. Calculation grid size was 1 mm for SBRT and 2.5 mm for locally advanced plans. All plans were recalculated with AcurosXB with same MU as in AAA, for comparison on target coverage and dose to risk organs.ResultsLung volume increased in DIBH, resulting in decreased lung density (6% for early and 13% for locally-advanced group).In SBRT, AAA overestimated mean and near-minimum PTV dose (p-values < 0.01) compared to AcurosXB, with largest impact in DIBH (differences of up to 11 Gy). These clinically relevant differences may be a combination of small targets and large dose gradients within the PTV.In locally advanced group, AAA overestimated mean GTV, CTV and PTV doses by median less than 0.8 Gy and near-minimum doses by median 0.4–2.7 Gy.No clinically meaningful difference was observed for lung and heart dose metrics between the algorithms, for both FB and DIBH.ConclusionsAAA overestimated target coverage compared to AcurosXB, especially in DIBH for SBRT.  相似文献   

17.
PurposePancreatic tumor treatment dose distribution variations associated with supine and prone patient positioning were evaluated.MethodsA total of 33 patients with pancreatic tumors who underwent CT in the supine and prone positions were analyzed retrospectively. Gross tumor volume (GTV), planning target volume (PTV), and organs at risk (OARs) (duodenum and stomach) were contoured. The prescribed dose of 55.2 Gy (RBE) was planned from four beam angles (0°, 90°, 180°, and 270°). Patient collimator and compensating boli were designed for each field. Dose distributions were calculated for each field in the supine and prone positions. To improve dose distribution, patient positioning was selected from supine or prone for each beam field.ResultsCompared with conventional beam angle and patient positioning, D2cc of 1st-2nd portion of duodenum (D1-D2), 3rd-4th portion of duodenum (D3-D4), and stomach could be reduced to a maximum of 6.4 Gy (RBE), 3.5 Gy (RBE), and 4.5 Gy (RBE) by selection of patient positioning. V10 of D1-D2, D3-D4, and stomach could be reduced to a maximum of 7.2 cc, 11.3 cc, and 11.5 cc, respectively. D95 of GTV and PTV were improved to a maximum of 6.9% and 3.7% of the prescribed dose, respectively.ConclusionsOptimization of patient positioning for each beam angle in treatment planning has the potential to reduce OARs dose maintaining tumor dose in pancreatic treatment.  相似文献   

18.
BackgroundThis investigation focused on the clinical implications of the use of the Collapsed Cone Convolution algorithm (CCC) in breast radiotherapy and investigated the dosimetric differences as respect to Pencil Beam Convolution algorithm (PBC).Material and methods15 breast treatment plans produced using the PBC algorithm were re-calculated using the CCC algorithm with the same MUs. In a second step, plans were re-optimized using CCC algorithm with modification of wedges and beam weightings to achieve optimal coverage (CCCr plans). For each patient, dosimetric comparison was performed using the standard tangential technique (SWT) and a forward-planned IMRT technique (f-IMRT).ResultsThe CCC algorithm showed significant increased dose inhomogeneity. Mean and minimum PTV doses decreased by 1.4% and 2.8% (both techniques). Mean V95% decreased to 83.7% and 90.3%, respectively for the SWT and f-IMRT. V95% was correlated to the ratio of PTV and lung volumes into the treatment field. The re-optimized CCCr plans achieved similar target coverage, but high-dose volume was significantly larger (V107%: 7.6% vs 2.3% (SWT), 7.1% vs 2.1% (f-IMRT). There was a significantly increase in the ipsilateral lung volume receiving low doses (V5 Gy: 31.3% vs 26.2% in SWT, 27.0% vs 23.0% in f-IMRT). MUs needed for PTV coverage in CCCr plans were higher by 3%.ConclusionsThe PBC algorithm overestimated PTV coverage in terms of all important dosimetric metrics. If previous clinical experience are based on the use of PBC model, especially needed is discussion between medical physicists and radiation oncologists to fully understand the dosimetric changes.  相似文献   

19.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号