首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogenetic position of the Turnicidae (Aves) was unresolved. Historically, they were classified as members of the Struthioniformes, Galliformes, Charadriiformes, Columbiformes or the Gruiformes. In these classifications they had taxonomic rank of order 'Turniciformes' or family 'Turnicidae'. However, most of these studies followed phenetic methodology and used morphological similarity of taxa and plesiomorphic characters to classify Turnix . Recent phylogenetic studies on the basis of morphological character analyses or phenetic comparisons based on DNA-DNA hybridization experiments failed to clarify the phylogenetic realtionship of Turnix and suggested a position as 'incerte sedis', either among the Gruiformes or as the parvclass 'Turnicac'as a sistergroup to the 'Neoaves'.
We studied skeletal and myological material of Turnix to resolve its phylogenetic position. Further, we considered all characters that were previously discussed in literature to classify Turnix and tested them for their potential use in phylogenetic analysis. We added several yet unemployed morphological characters of phylogenetic significance to the analysis. The Struthioniformes, 'Galloanseres', and Columbiformes are each characterized by a clear set of autapomorpies. Only one autapomorphy in known for the Gruiformes but this character is of satisfying consistency and can be found in all families of the Gruiformes (Gruidae, Psophiidae, Aramidae. Rallidae) and Turnix. Turnix and the Rallidae share four complex morphological characters implying a close phylogenetic relationship. The data presented in this paper support the hypothesis that Turnix is a member of the Gruiformes with close relationships to the Rallidae. No evidence was found that would support a parvclass 'Turnicae'as sistergroup to the 'Neoaves'.  相似文献   

2.

Aim

To assess whether mammalian species introduced onto islands across the globe have evolved to exhibit body size patterns consistent with the ‘island rule,’, and to test an ecological explanation for body size evolution of insular mammals.

Location

Islands worldwide.

Methods

We assembled data on body mass, geographical characteristics (latitude, maximum elevation) and ecological communities (number of mammalian competitors, predators and prey) for 385 introduced populations across 285 islands, comprising 56 species of extant, non‐volant mammals. We used linear regression, ANCOVA and regression tree analyses to test whether introduced populations of mammals exhibit the island rule pattern, whether the degree of body size change increased with time in isolation and whether residual variation about the general trend can be attributed to the geographical and ecological characteristics of the islands.

Results

Introduced populations follow the predicted island rule trend, with body size shifts more pronounced for populations with greater residence times on the islands. Small mammals evolved to larger body sizes in lower latitudes and on islands with limited topographic relief. Consistent with our hypothesis on the ecology of evolution, body size of insular introduced populations was influenced by co‐occurring species of mammalian competitors, predators and prey.

Conclusion

The island rule is a pervasive pattern, exhibited across a broad span of geographical regions, taxa, time periods and, as evidenced here, for introduced as well as native mammals. Time in isolation impacts body size evolution profoundly. Body size shift of introduced mammals was much more pronounced with increasing residence times, yet far less than that exhibited by native, palaeo‐insular mammals (residence times > 10,000 years). Given the antiquity of many species introductions, it appears that much of what we view as the natural character and ecological dynamics of recent insular communities may have been rendered artefacts of ancient colonizations by humans and commensals.  相似文献   

3.
    
The extinction of species before they are discovered and named (dark extinction, DE) is widely inferred as a significant part of species loss in the ‘pre-taxonomic’ period (approx. 1500–1800 CE) and, to some extent, in the ‘taxonomic period’ (approx. 1800–present) as well. The discovery of oceanic islands and other pristine habitats by European navigators and the consequent introduction of destructive mammals, such as rats and goats, started a process of anthropogenic extinction. Much ecosystem change happened before systematic scientific recording, so has led to DE. Statistical methods are available to robustly estimate DE in the ‘taxonomic period’. For the ‘pre-taxonomic period’, simple extrapolation can be used. The application of these techniques to world birds, for example, suggests that approximately 56 DEs occurred in the ‘taxonomic period’ (1800–present) and approximately 180 in the ‘pre-taxonomic period’ (1500–1800). Targeting collection activities in extinction hotspots, to make sure organisms are represented in collections before their extinction, is one way of reducing the number of extinct species without a physical record (providing that collection efforts do not themselves contribute to species extinction).  相似文献   

4.
Phylogeny provides a natural measurement of biodiversity by allowing the computation of indexes that express the amount of phylogenetic diversity that are, in principle, independent of species counts and provides an objective measurement to evaluate the amount of biodiversity lost under the ongoing extinction crisis. In this note, we analyzed patterns of phylogenetic autocorrelation in extinction risks in Felidae (Mammalia: Carnivora) and estimated, using simulation procedures, the amount of phylogenetic diversity loss if k species are preserved in this clade. The simulations showed that loss of phylogenetic diversity based on the IUCN list for extinction threats in Felidae is within the expected values based on the simulated random model, a result also confirmed by the absence of phylogenetic autocorrelation in extinction risks, indicating that extinction threats are randomly distributed across the phylogeny. So, we confirm that loosing species will not necessarily generate a direct proportional loss of phylogenetic information and, consequently, that alternative measures of biodiversity could be used to establish conservation priorities under the common restriction of resources.  相似文献   

5.
The publication of Systematics Agenda 2000 in February, 1994 represented an historic event in the collaboration of the systematic biology community designed to set a research agenda for a twenty five year period across the areas of basic and applied systematics. How the community came to take the initiative to produce such a consensus is outlined. Of special interest is the emergence of the Systematics Agenda 2000 initiative from a North American perspective to a truly global enterprise.  相似文献   

6.
7.
    
  相似文献   

8.
    
Species are being lost at an unprecedented rate during the Anthropocene. Progress has been made in clarifying how species traits influence their propensity to go extinct, but the role historical demography plays in species loss or persistence is unclear. In eastern North America, five charismatic landbirds went extinct last century, and the causes of their extinctions have been heavily debated. Although these extinctions are most often attributed to post-colonial human activity, other factors such as declining ancestral populations prior to European colonization could have made these species particularly susceptible. We used population genomic data from these extinct birds and compared them with those from four codistributed extant species. We found extinct species harboured lower genetic diversity and effective population sizes than extant species, but both extinct and non-extinct birds had similar demographic histories of population expansion. These demographic patterns are consistent with population size changes associated with glacial–interglacial cycles. The lack of support for overall population declines during the Pleistocene corroborates the view that, although species that went extinct may have been vulnerable due to low diversity or small population size, their disappearance was driven by human activities in the Anthropocene.  相似文献   

9.
    
Abstract: Three family‐level cladistic analyses of temnospondyl amphibians are used to evaluate the impact of taxonomic rank, tree topology, and sample size on diversity profiles, origination and extinction rates, and faunal turnover. Temnospondyls are used as a case study for investigating replacement of families across the Permo‐Triassic boundary and modality of recovery in the aftermath of the end‐Permian mass extinction. Both observed and inferred (i.e. tree topology‐dependent) values of family diversity have a negligible effect on the shape of the diversity curve. However, inferred values produce both a flattening of the curve throughout the Cisuralian and a less pronounced increase in family diversity from Tatarian through to Induan than do observed values. Diversity curves based upon counts of genera and species display a clearer distinction between peaks and troughs. We use rarefaction techniques (specifically, rarefaction of the number of genera and species within families) to evaluate the effect of sampling size on the curve of estimated family‐level diversity during five time bins (Carboniferous; Cisuralian; Guadalupian–Lopingian; Early Triassic; Middle Triassic–Cretaceous). After applying rarefaction, we note that Cisuralian and Early Triassic diversity values are closer to one another than they are when the observed number of families is used; both values are also slightly higher than the Carboniferous estimated diversity. The Guadalupian–Lopingian value is lower than raw data indicate, reflecting in part the depauperate land vertebrate diversity from the late Cisuralian to the middle Guadalupian (Olson’s gap). The time‐calibrated origination and extinction rate trajectories plot out close to one another and show a peak in the Induan, regardless of the tree used to construct them. Origination and extinction trajectories are disjunct in at least some Palaeozoic intervals, and background extinctions exert a significant role in shaping temnospondyl diversity in the lowermost Triassic. Finally, species‐, genus‐, and family trajectories consistently reveal a rapid increase in temnospondyl diversity from latest Permian to earliest Triassic as well as a decline near the end of the Cisuralian. However, during the rest of the Cisuralian family diversity increases slightly and there is no evidence for a steady decline, contrary to previous reports.  相似文献   

10.
11.
苔藓动物是一类多为海生、滤食性的群体生物。奥陶纪是苔藓动物发生、演化辐射和灭绝的重要时期,也是苔虫礁形成的最早时期。已知最老的化石苔藓动物发现于中国特马豆克晚期。构成苔藓动物基本分类框架的狭唇纲(包括变口目、隐口目、泡孔目和管孔目)和宽唇纲(包括窗孔目和栉口目)也都是在奥陶纪时期逐步形成的,其中,变口目出现于特马豆克期Tr2时间段,在弗洛期和大坪期,多样性较低,但从达瑞威尔期开始,经桑比期至凯迪期,多样性不断增高,并出现辐射。隐口目(特别是\"双叶类隐口目苔虫\")也经历了与变口目相类似的发展过程,但它首次出现的时间要相对略迟于变口目。这两个目在整个奥陶纪苔藓动物群中一直占据主导地位。泡孔目、管孔目和窗孔目,先后首次出现在弗洛期Fl2时间段、大坪期Dp1和Dp2时间段,但它们在整个奥陶纪期间一直处于低多样性态势。至于栉口目,它首次出现的时间可能更迟,在凯迪期Ka4时间段,犹如昙花一现。苔藓动物的演化在接近奥陶纪末时呈两幕式灭绝,一次发生在凯迪期Ka2时间段(可能相当于塔凯和安斯蒂的\"拉夫塞伊灭绝\"),另一次发生在赫南特期Hi2时间段(可能相当于塔凯和安斯蒂的\"赫南特灭绝\")。分子生物学和形态学证据表明,苔藓动物属原口动物,而不是以前长期认为的后口动物,或介于原口动物和后口动物之间的过渡类型;而且,苔藓动物与腕足动物、帚形动物之间没有直接的亲缘关系。苔藓动物可能起源于一种叫原内肛动物的生物,它们的目一级分类单元之间的系统发育关系目前尚未形成共识,本文绘制的谱系图还有待于化石记录的不断补充和分子生物学研究的逐步介入以使其日趋完善。  相似文献   

12.
    
  相似文献   

13.
    
In the midst of only the 6th mass extinction in the Earth's history, we must rethink how we teach evolution to prevent natural selection from being incorrectly used as a biological justification for inaction in the face of today's human-caused mass extinction crisis. Pundits, policy makers, and the general public regularly identify the extinction of endangered species as natural selection at work, rather than attributing modern-day extinction to the sudden catastrophic bad luck of human caused environmental change, a phenomenon distinct from natural selection. In this natural selection framing, the inability of species to survive in human altered environments is the normal progression of “survival of the fittest” and conservation measures designed to protect species is human interference with natural selection. Paradoxically, this erroneous framing of extinction as the normal course of natural selection ignores humanity's exceptional role in causing today's mass extinction crisis. Our examination of this issue in U.S. college students indicates that it arises from misunderstanding the role of extinction in the history of life, leading us to recommend a greater teaching emphasis on the distinction between extinction and natural selection, and on past mass extinction events. Also see the video abstract here https://youtu.be/29VRyirMdiw  相似文献   

14.
    
Human activities have been reshaping the natural world for tens of thousands of years, leading to the extinction of hundreds of bird species. Past research has provided evidence of extinction selectivity towards certain groups of species, but trait information is lacking for the majority of clades, especially for prehistoric extinctions identified only through subfossil remains. This incomplete knowledge potentially obscures the structure of natural communities, undermining our ability to infer changes in biodiversity across space and time, including trends in functional and phylogenetic diversity. Biases in currently available trait data also limit our ability to identify drivers and processes of extinction. Here we present AVOTREX, an open-access database of species traits for all birds known to have gone extinct in the last 130,000 years. This database provides detailed morphological information for 610 extinct species, along with a pipeline to build phylogenetic trees that include these extinct species.  相似文献   

15.
  总被引:1,自引:2,他引:1  
Aim MacArthur and Wilson’s dynamic equilibrium model of island biogeography provides a powerful framework for understanding the ecological processes acting on insular populations. However, their model is known to be less successful when applied to systems and processes operating on evolutionary and geological timescales. Here, we present a general dynamic model (GDM) of oceanic island biogeography that aims to provide a general explanation of biodiversity patterns through describing the relationships between fundamental biogeographical processes – speciation, immigration, extinction – through time and in relation to island ontogeny. Location Analyses are presented for the Azores, Canaries, Galápagos, Marquesas and Hawaii. Methods We develop a theoretical argument from first principles using a series of graphical models to convey key properties and mechanisms involved in the GDM. Based on the premises (1) that emergent properties of island biotas are a function of rates of immigration, speciation and extinction, (2) that evolutionary dynamics predominate in large, remote islands, and (3) that oceanic islands are relatively short‐lived landmasses showing a characteristic humped trend in carrying capacity (via island area, topographic variation, etc.) over their life span, we derive a series of predictions concerning biotic properties of oceanic islands. We test a subset of these predictions using regression analyses based largely on data sets for native species and single‐island endemics (SIEs) for particular taxa from each archipelago, and using maximum island age estimates from the literature. The empirical analyses test the power of a simple model of diversity derived from the GDM: the log(Area) + Time + Time2 model (ATT2), relative to other simpler time and area models, using several diversity metrics. Results The ATT2 model provides a more satisfactory explanation than the alternative models evaluated (for example the standard diversity–area models) in that it fits a higher proportion of the data sets tested, although it is not always the most parsimonious solution. Main conclusions The theoretical model developed herein is based on the key dynamic biological processes (migration, speciation, extinction) combined with a simple but general representation of the life cycle of oceanic islands, providing a framework for explaining patterns of biodiversity, endemism and diversification on a range of oceanic archipelagos. The properties and predictions derived from the model are shown to be broadly supported (1) by the empirical analyses presented, and (2) with reference to previous phylogenetic, ecological and geological studies.  相似文献   

16.
Survivorship curves with taxon lifespans normalised to variations in the real‐time extinction rate (the ‘Corrected Survivorship Score’ technique) are plotted for various fossil groups. Of five groups tested at the ‘species level’ (strictly speaking, Linnean morphospecies), only the calcareous nannoplankton are found to have had a constant extinction probability with respect to morphospecies age. The planktonic foraminifer, trilobite, conodont and graptolite data all show a significant age‐dependent effect (convexity of survivorship curves), which reveals in each case a progressively increasing extinction probability as morphospecies became older. This effect is found to be much reduced for trilobite genera and absent for ammonoid families, suggesting that age‐dependency of extinction probability is primarily a characteristic of the species level in some, but not all groups. However, the pattern may be partly an artefact of taxonomic methodology. Morphospecies range data, which are gathered primarily for biostratigraphic purposes, are far from ideal for the purpose of survivorship analysis. Therefore, survivorship curves for a specially‐developed lineage phylogeny of Palaeogene planktonic foraminifera are also presented. These do not indicate a similar age‐dependency to the extinction probability with respect to either the terminal or non‐terminal lineages.  相似文献   

17.
18.
    
Biodiversity loss not only implies the loss of species but also entails losses in other dimensions of biodiversity, such as functional, phylogenetic and interaction diversity. Yet, each of those facets of biodiversity may respond differently to extinctions. Here, we examine how extinction, driven by climate and land-use changes may affect those different facets of diversity by combining empirical data on anuran–prey interaction networks, species distribution modelling and extinction simulations in assemblages representing four Neotropical ecoregions. We found a mismatch in the response of functional, phylogenetic and interaction diversity to extinction. In spite of high network robustness to extinction, the effects on interaction diversity were stronger than those on phylogenetic and functional diversity, declining linearly with species loss. Although it is often assumed that interaction patterns are reflected by functional diversity, assessing species interactions may be necessary to understand how species loss translates into the loss of ecosystem functions.  相似文献   

19.
According to a traditional but hitherto untested reconstruction of Madagascar’s Holocene environment, continuous forest preceded the monotonous grassland formations that now cover most of the island’s interior. Preliminary analyses of pollen samples collected near14C-dated horizons at Ampasambazimba (central Madagascar) indicate that a mosaic of woodlands, bushlands, and savanna existed close to this important vertebrate subfossil site around 7000–8000 BP. Although most members of Madagascar’s recently extinct “subfossil” fauna are thought to have been forest dwellers, several may have preferred a more open habitat like the one inferred for the region of Ampasambazimba. Dry savanna-woodland burns more readily than does dense forest and may have been more severely affected by the forces which transformed the Malagasy environment during the later Holocene. If so, the loss of savanna-woodland, not dense forest, may have been an important factor in the subfossil extinctions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号