首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim We surveyed mitochondrial DNA (mtDNA) sequence variation among regionally isolated populations of 10 grassland‐associated butterfly species to determine: (1) the utility of phylogeographic comparisons among multiple species for assessing recent evolutionary patterns, and (2) the respective roles of isolation attributable to range disjunction versus isolation attributable solely to geographic distance in establishing divergence patterns. Location The Peace River grasslands of northern Alberta and British Columbia, Canada, which are isolated by 300+ km from similar communities to the south. Methods We sequenced mtDNA (1420 bp of cytochrome c oxidase subunit I) from five grassland‐restricted butterfly species that have geographically disjunct populations and from five ecologically broader species that have more continuous distributions across the same regions. Using analysis of molecular variance (AMOVA), Mantel and partial Mantel tests, and haplotype networks, we compared population structure within and between species in order to assess the validity of single‐species phylogeographic characterizations. We then contrasted variance components between disjunct and continuously distributed species to assess whether divergences were correlated more with disjunction or with geographic distance. Results Single‐species analyses varied substantially within both the disjunct and the continuous groups. One species in each of these groups had mtDNA with unusually deep intraspecific mitochondrial lineage divergences. On the whole, however, the five species with disjunct ranges exhibited greater divergence between geographically distant populations than did the five species with continuous distributions. Comparison of variance components between disjunct and continuous species indicated that isolation attributable only to geographic distance was responsible for up to half of the total sequence variation between disjunct populations of grassland butterflies. Main conclusions Our findings show that single‐species phylogeographic analyses of post‐Pleistocene butterfly distributions are inadequate for characterizing regional biogeographic divergence histories. However, comparison of mtDNA sequence divergences between groups of disjunct and continuously distributed species can allow isolation attributable to range interruption to be quantitatively distinguished from isolation attributable solely to gene flow attenuation over the same geographic area.  相似文献   

2.
DNA Barcodes for the FIshes of the Narmada,One of India’s Longest Rivers   总被引:1,自引:0,他引:1  
This study describes the species diversity of fishes of the Narmada River in India. A total of 820 fish specimens were collected from 17 sampling locations across the whole river basin. Fish were taxonomically classified into one of 90 possible species based on morphological characters, and then DNA barcoding was employed using COI gene sequences as a supplemental identification method. A total of 314 different COI sequences were generated, and specimens were confirmed to belong to 85 species representing 63 genera, 34 families and 10 orders. Findings of this study include the identification of five putative cryptic or sibling species and 43 species not previously known from the Narmada River basin. Five species are endemic to India and three are introduced species that had not been previously reported to occur in the Narmada River. Conversely, 43 species previously reported to occur in the Narmada were not found. Genetic diversity and distance values were generated for all of the species within genera, families and orders using Kimura’s 2 parameter distance model followed by the construction of a Neighbor Joining tree. High resolution clusters generated in NJ trees aided the groupings of species corresponding to their genera and families which are in confirmation to the values generated by Automatic Barcode Gap Discovery bioinformatics platform. This aided to decide a threshold value for the discrimination of species boundary from the Narmada River. This study provides an important validation of the use of DNA barcode sequences for monitoring species diversity and changes within complex ecosystems such as the Narmada River.  相似文献   

3.
The rate at which climate is changing in northern latitudes presents a significant threat to bird populations that rely on boreal forests. Alterations in the distributions of trees and other plants as a result of warming will alter the habitat suitability of vast regions of boreal and hemiboreal forests. Climate change associated habitat alterations along with range expansions of bird species are likely to have substantial consequences on avian communities and biodiversity. Identifying factors that contribute to species coexistence and community assembly processes at local and regional scales will facilitate predictions about the impact of climate change on avian communities in these forest ecosystems. This paper provides a comprehensive review of historic and current theories of community ecology dynamics providing a theoretical synthesis that links the evolution of species traits at the individual level, the dynamics of species interactions, and the overall maintenance of biodiversity. Integration of these perspectives is necessary to provide the scientific means to face growing environmental challenges in boreal ecosystems.  相似文献   

4.
Fungi are key organisms in terrestrial ecosystems, functioning as decomposers, pathogens, and symbionts. Identifying the mechanisms that shape metacommunity patterns is likely to be critical for predicting how ecosystems will respond to global environmental change. Using fungal occurrence data and a hierarchical approach that combines three elements of metacommunity structure—coherence, turnover and boundary clumping—we identified the structures that best describe metacommunity patterns. We related these patterns to underlying environmental and spatial variables known to influence fungal distribution, and determined the relative importance of the environment and geographic distance in structuring fungal metacommunities. Fungal metacommunities had Clementsian and quasi-Clementsian structures, indicating that species distributions were compartmentalized along a dominant environmental gradient. This gradient was strongly associated with annual precipitation, precipitation seasonality and pH for the entire metacommunity. Variance partitioning revealed that the environment was relatively more important than geographic distance in explaining metacommunity patterns, indicating that niche-based processes are crucial in shaping species distributions among sites. However, the strength of the relationship between the latent gradient and environmental factors and the relative contributions of the environment and geographic distance to metacommunity structure varied across groups, suggesting that interactions among habitat, dispersal and life-history might be driving these differences.  相似文献   

5.
The Uruguay River starts in Serra do Mar in Brazil runs through the Paranense forest and flows southward through grassland and savannas. It has a continuous gallery forest of 750 km from the southern border of the Paranense forest to the river mouth. The gallery forest extends for 100 km more along the Río de la Plata. 125 (68.7%) of the 182 species of forest birds recorded in the southern Paranense forest penetrate into the gallery forest of the Uruguay River and only 13 (7.1%) reach the end of the gallery forest (Punta Lara). The number of bird species is inversely correlated (r2 = 0.942) with distance and the slope of the regression is 58.10. This means a decline in diversity with 32% of species lost per unit distance. A hundred and eighty forest tree species were recorded in the southern Paranense forest, of which 113 (62.8%) penetrate into the gallery forest of the Uruguay River, and 28 (15.6%) reach Punta Lara. The number of tree species is inversely correlated (r2 = 0.976) with distance and the slope of the regression is ?45.62. This means a decline in diversity with 25% of species lost per unit distance. The Uruguay River enables the dispersal of many species of forest birds and trees from the rain forest, but species richness tends to decrease with increased distance from the source area. A clear association pattern was found for birds between size, diet, habitat use and distance reached into the gallery forest. Species of smaller body size, granivores, insectivores and those that use both the interior and exterior parts of the gallery forest advanced noticeably further along the river than larger species, carnivores, nectarivores or frugivores, and those that frequent only a part of the forest. Similarly, a clear association between dispersal mechanism, water dependence and distance reached into the gallery forest was found for trees. Species with vegetative reproduction, zoochorous species and riparian species advanced markedly longer distances along the river than, anemochorous species and non‐riparian species.  相似文献   

6.
Food subsidies have the potential to modify ecosystems and affect the provision of goods and services. Predictable Anthropogenic Food Subsidies (PAFS) modify ecosystems by altering ecological processes and food webs. The global concern over the effects of PAFS in ecosystems has led to development of environmental policies aimed at curbing the production or ultimately banning of PAFS. However, the effects of reducing or banning PAFS are not known. We explore the consequences of PAFS removal in a marine ecosystem under two scenarios: 1) gradual reduction, or 2) an abrupt ban, using a mass balance model to test these hypotheses–The reduction or loss of PAFS will: i) modify trophic levels and food webs through effects on foraging by opportunistic species, ii) increase the resilience of opportunistic species to food shortages, and iii) modify predator–prey interactions through shifts in prey consumption. We found that PAFS lower the trophic levels of opportunistic scavengers and increase their food pathways. Scavengers are able to switch prey when PAFS are reduced gradually but they decline when PAFS are abruptly banned. PAFS reduction to a certain minimal level causes a drop in the ecosystem’s stability. We recommend gradual reduction of PAFS to a minimal level that would maintain the ecosystem’s stability and allow species exploiting PAFS to habituate to the food subsidy reduction.  相似文献   

7.
The phylogeny of butterflies, Parnassius stubbendorfii and P. glacialis, collected at various localities in the Japan archipelago and the eastern part of the Asian continent was analyzed using mitochondrial DNA sequences coding for NADH dehydrogenase subunit 5 (805 bp). The molecular phylogenetic trees revealed that P. glacialis and P. stubbendorfii diverged from a common ancestor, and then the populations inhabiting the Japan archipelago and the Asian continent diverged in each species. The reliability of these divergences was supported by high bootstrap values. The divergences within the Japan archipelago and within the Asian continent in each species were unclear because of low bootstrap values. The genetic distance and a rough time-estimation in the UPGMA tree suggest that the both populations of P. glacialis and P. stubbendorfii may have been isolated in the Japan archipelago at the early time (about 1.7-2.0 Mya) of the glacial period in the Pleistocene. The genetic distance between the Japanese and the continental subspecies may be large enough that they can be classified as different species, in comparison with the genetic distances among some other parnassian species.  相似文献   

8.
常绿阔叶林是我国亚热带地区的地带性植被, 但由于长期的人为干扰, 目前仅有少量分布且主要以次生常绿阔叶林的形式存在。因此, 了解次生常绿阔叶林的物种共存机制对于保护森林生物多样性非常重要。基于大型动态监测样地对森林的物种组成及群落结构进行研究, 是揭示生物多样性维持机制的重要手段。按照美国史密森研究院热带森林科学研究中心(Center for Tropical Forest Science, CTFS)大型森林动态样地建设标准, 于2011-2012年在浙江省乌岩岭国家级自然保护区内建立了1个9 ha森林动态监测样地。通过对样地内胸径≥ 1 cm木本植物的物种组成(如重要值)、群落结构(如区系组成和径级结构等)以及空间分布的分析发现: (1)样地有木本植物存活个体47科92属200种71,396株, 其中壳斗科、樟科、山茶科、冬青科、杜鹃花科和山矾科等占优势; (2)在区系组成上, 热带成分略多于温带成分; (3)群落径级结构接近倒“J”型, 表明群落更新良好, 其中优势种径级结构呈倒“J”型、偏常态型和波动型等各种形态, 且并未表现出种群衰退的趋势; (4)优势种表现出明显的生境偏好和聚集分布格局, 暗示生境异质性可能是影响亚热带次生常绿阔叶林物种空间分布的重要因素。  相似文献   

9.
River ecosystems are threatened by future changes in land use and climatic conditions. However, little is known of the influence of interactions of these two dominant global drivers of change on ecosystems. Does the interaction amplify (synergistic interaction) or buffer (antagonistic interaction) the impacts and does their interaction effect differ in magnitude, direction and spatial extent compared to single independent pressures. In this study, we model the impact of single and interacting effects of land use and climate change on the spatial distribution of 33 fish species in the Elbe River. The varying effects were modeled using step‐wise boosted regression trees based on 250 m raster grid cells. Species‐specific models were built for both ‘moderate’ and ‘extreme’ future land use and climate change scenarios to assess synergistic, additive and antagonistic interaction effects on species losses, species gains and diversity indices and to quantify their spatial distribution within the Elbe River network. Our results revealed species richness is predicted to increase by 0.7–2.9 species by 2050 across the entire river network. Changes in species richness are likely to be spatially variable with significant changes predicted for 56–85% of the river network. Antagonistic interactions would dominate species losses and gains in up to 75% of the river network. In contrast, synergistic and additive effects would occur in only 20% and 16% of the river network, respectively. The magnitude of the interaction was negatively correlated with the magnitudes of the single independent effects of land use and climate change. Evidence is provided to show that future land use and climate change effects are highly interactive resulting in species range shifts that would be spatially variable in size and characteristic. These findings emphasize the importance of adaptive river management and the design of spatially connected conservation areas to compensate for these high species turnovers and range shifts.  相似文献   

10.
植物间交互作用在植物群落和生态系统的组成、结构、功能等方面发挥着重要作用.在过去的森林生态系统研究中,更多地关注上层乔木之间的相互作用或乔木层对下层植被的影响,较少研究林下层植被对上层乔木生理生态和生长的影响.本文综述了去除林下层植被对土壤理化性质、土壤动物区系、凋落物分解及上层乔木生理生态和生长的影响,讨论了外界干扰对林下植被-乔木层竞争关系的影响,提出林下植被对上层乔木影响的生理生态学机理概念模型.研究区域、乔木林龄、地力条件、林下植物种类是影响林下层植被-乔木层竞争关系的重要因素.  相似文献   

11.
Montane species distributions interrupted by valleys can lead to range fragmentation, differentiation and ultimately speciation. Paleoclimatic fluctuations may accentuate or reduce such diversification by temporally altering the extent of montane habitat and may affect species differentially. We examined how an entire montane bird community of the Western Ghats—a linear, coastal tropical mountain range—responds to topographic valleys that host different habitats. Using genetic data from 23 species (356 individuals) collected across nine locations, we examined if different species in the community reveal spatial concordance in population differentiation, and whether the timing of these divergences correlate with climatic events. Our results reveal a nested effect of valleys, with several species (10 of 23) demonstrating the oldest divergences associated with the widest and deepest valley in the mountain range, the Palghat Gap. Further, a subset of these 10 species revealed younger divergences across shallower, narrower valleys. We recovered discordant divergence times for all valley-affected montane birds, mostly in the Pleistocene, supporting the Pliestocene-pump hypotheses and highlighting the role of climatic fluctuations during this period in driving species evolution. A majority of species remain unaffected by valleys, perhaps owing to geneflow or extinction–recolonization dynamics. Studying almost the entire community allowed us to uncover a range of species’ responses, including some generalizable and other unpredicted patterns.  相似文献   

12.
The distributions of body masses and degrees (i.e. the number of trophic links) across species are key determinants of food‐web structure and dynamics. In particular, allometric degree distributions combining both aspects in the relationship between degrees and body masses are of critical importance for the stability of these complex ecological networks. They describe decreases in vulnerability (i.e. the number of predators) and increases in generality (i.e. the number of prey) with increasing species’ body masses. We used an entirely new global body‐mass database containing 94 food webs from four different ecosystem types (17 terrestrial, 7 marine, 54 lake, 16 stream ecosystems) to analyze (1) body mass distributions, (2) cumulative degree distributions (vulnerability, generality, linkedness), and (3) allometric degree distributions (e.g. generality – body mass relationships) for significant differences among ecosystem types. Our results demonstrate some general patterns across ecosystems: (1) the body masses are often roughly log‐normally (terrestrial and stream ecosystems) or multi‐modally (lake and marine ecosystems) distributed, and (2) most networks exhibit exponential cumulative degree distributions except stream networks that most often possess uniform degree distributions. Additionally, with increasing species body masses we found significant decreases in vulnerability in 70% of the food webs and significant increases in generality in 80% of the food webs. Surprisingly, the slopes of these allometric degree distributions were roughly three times steeper in streams than in the other ecosystem types, which implies that streams exhibit a more pronounced body mass structure. Overall, our analyses documented some striking generalities in the body‐mass (allometric degree distributions of generality and vulnerability) and degree structure (exponential degree distributions) across ecosystem types as well as surprising exceptions (uniform degree distributions in stream ecosystems). This suggests general constraints of body masses on the link structure of natural food webs irrespective of ecosystem characteristics.  相似文献   

13.
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species’ responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species’ distributions highlights the need to include river flow data in climate change impact models of species’ distributions.  相似文献   

14.
Species distributions are limited by a complex array of abiotic and biotic factors. In general, abiotic (climatic) factors are thought to explain species’ broad geographic distributions, while biotic factors regulate species’ abundance patterns at local scales. We used species distribution models to test the hypothesis that a biotic interaction with a tree, the Colombian oak (Quercus humboldtii), limits the broad-scale distribution of the Acorn Woodpecker (Melanerpes formicivorus) in the Northern Andes of South America. North American populations of Acorn Woodpeckers consume acorns from Quercus oaks and are limited by the presence of Quercus oaks. However, Acorn Woodpeckers in the Northern Andes seldom consume Colombian oak acorns (though may regularly drink sap from oak trees) and have been observed at sites without Colombian oaks, the sole species of Quercus found in South America. We found that climate-only models overpredicted Acorn Woodpecker distribution, suggesting that suitable abiotic conditions (e.g. in northern Ecuador) exist beyond the woodpecker’s southern range margin. In contrast, models that incorporate Colombian oak presence outperformed climate-only models and more accurately predicted the location of the Acorn Woodpecker’s southern range margin in southern Colombia. These findings support the hypothesis that a biotic interaction with Colombian oaks sets Acorn Woodpecker’s broad-scale geographic limit in South America, probably because Acorn Woodpeckers rely on Colombian oaks as a food resource (possibly for the oak’s sap rather than for acorns). Although empirical examples of particular plants limiting tropical birds’ distributions are scarce, we predict that similar biotic interactions may play an important role in structuring the geographic distributions of many species of tropical montane birds with specialized foraging behavior.  相似文献   

15.
Most traditional "biodiversity" indices have an uncertain ecological interpretation, unfavourable sampling properties, and excessive data requirements. A new index of taxonomic distinctness (the average evolutionary distance between species in an assemblage) has many advantages over traditional measures, but its ecological interpretation remains unclear. We used published behavioural species data in conjunction with bird atlas data to quantify simple functional metrics (the fraction of species engaged in non-competitive interactions, and the average between-species disparity in habitat preferences) for breeding-bird assemblages in Europe and North America. We then analysed correlations of functional metrics with taxonomic distinctness and species richness, respectively. All functional metrics had weak, positive correlations with species richness. In contrast, correlations between functional metrics and taxonomic distinctness ranged from slightly negative to strongly positive, depending on the relative habitat heterogeneity, and on the resource involved in the between-species interaction. Strong positive correlations between taxonomic distinctness and the fraction of interactive species occurred for resources with few producer species per consumer species, and we suggest that taxonomic distinctness is consistently correlated with conservation worth. With its favourable sampling properties and data requirements, this taxonomic distinctness measure is a promising tool for biodiversity research and for environmental monitoring and management.  相似文献   

16.
四川诺水河珍稀水生动物国家级自然保护区由嘉陵江支流渠江上游的大通江及支流小通江组成, 为全面了解该保护区的鱼类资源现状, 作者于2015年11月至2017年1月对30个采样点进行了5次资源调查。结果显示, 保护区共分布鱼类57种, 隶属4目13科45属, 其中调查采集47种, 访问调查获得10种。国家二级重点保护鱼类有1种, 即岩原鲤(Procypris rabaudi), 长江上游特有鱼类有12种, 列入《中国脊椎动物红色名录》的易危鱼类3种。保护区以小型鱼类为主, 优势种为宽鳍鱲(Zacco platypus)、嘉陵颌须鮈(Gnarhopogon herzensteini)和切尾拟鲿(Pseudobagrus truncatus)。保护区鱼类多样性较高, Shannon- Wiener多样性指数、Margalef物种丰富度指数、Simpson优势度指数和Pielou均匀度指数分别为2.900、5.198、0.931、0.753。Jaccard相似性系数表明, 大通江和小通江鱼类群落相似度较高, 同一河流不同河段间的相似度整体上与河段间距离成反比; 而不同河流相似海拔高度河段间鱼类群落相似度更高。保护区鱼类资源的衰退主要由过度捕捞、栖息地破坏以及水体污染等人类活动所致。  相似文献   

17.
Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world’s most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world’s most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin’s range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin.  相似文献   

18.
Freshwater ecosystems are negatively impacted by a variety of anthropogenic stressors, with concomitant elevated rates of population decline for freshwater aquatic vertebrates. Because reductions in population size and extent can negatively impact genetic diversity and gene flow, which are vital for sustained local adaptation, it is important to measure these characteristics in threatened species that may yet be rescued from extinction. Across its native range, Bull Trout (Salvelinus confluentus) extent and abundance are in decline due to historic overharvest, invasive non‐native species, and habitat loss. In Alberta''s Eastern Slope region, populations at the range margin have progressively been lost, motivating us to better understand the amount and distribution of genetic variation in headwater habitats and some downstream sites where they continue to persist. Across this region, we sampled 431 Bull Trout from 20 sites in the Athabasca and Saskatchewan River basins and assayed 10 microsatellite loci to characterize within‐ and among‐population genetic variation. The Saskatchewan and Athabasca River basins contained similar levels of heterozygosity but were differentiated from one another. Within the Athabasca River basin, five genetically differentiated clusters were found. Despite the evidence for genetic differentiation, we did not observe significant isolation‐by‐distance patterns among these sites. Our findings of ample genetic diversity and no evidence for hybridization with non‐native Brook Trout in headwater habitats provide motivation to ameliorate downstream habitats and remove anthropogenic barriers to connectivity towards the goal of long‐term persistence of this species.  相似文献   

19.
Salinity and inlet distance were the most consistent indicators of species groupings among the 40 most abundant fish species in the Indian River Lagoon (IRL), Florida. In contrast to findings of other studies conducted on small juveniles and forage fishes in the IRL, this study suggested that distributions of the more mobile organisms are influenced more by physical conditions than by biological interactions. Consequently, environmentally-corrected single-species models will be more effective in assessing changes in stock abundance and habitat preferences of mobile species in the IRL. Because of the fluctuations in physical conditions in the IRL and other estuaries, it may be inappropriate to use biologically based methods that rely solely on species interactions to assess fish stocks in those systems.  相似文献   

20.
According to classic theory, species'' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号