共查询到20条相似文献,搜索用时 15 毫秒
1.
Hachet-Haas M Balabanian K Rohmer F Pons F Franchet C Lecat S Chow KY Dagher R Gizzi P Didier B Lagane B Kellenberger E Bonnet D Baleux F Haiech J Parmentier M Frossard N Arenzana-Seisdedos F Hibert M Galzi JL 《The Journal of biological chemistry》2008,283(34):23189-23199
The chemokine CXCL12 and the receptor CXCR4 play pivotal roles in normal vascular and neuronal development, in inflammatory responses, and in infectious diseases and cancer. For instance, CXCL12 has been shown to mediate human immunodeficiency virus-induced neurotoxicity, proliferative retinopathy and chronic inflammation, whereas its receptor CXCR4 is involved in human immunodeficiency virus infection, cancer metastasis and in the rare disease known as the warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis (WHIM) syndrome. As we screened chemical libraries to find inhibitors of the interaction between CXCL12 and the receptor CXCR4, we identified synthetic compounds from the family of chalcones that reduce binding of CXCL12 to CXCR4, inhibit calcium responses mediated by the receptor, and prevent CXCR4 internalization in response to CXCL12. We found that the chemical compounds display an original mechanism of action as they bind to the chemokine but not to CXCR4. The highest affinity molecule blocked chemotaxis of human peripheral blood lymphocytes ex vivo. It was also active in vivo in a mouse model of allergic eosinophilic airway inflammation in which we detected inhibition of the inflammatory infiltrate. The compound showed selectivity for CXCL12 and not for CCL5 and CXCL8 chemokines and blocked CXCL12 binding to its second receptor, CXCR7. By analogy to the effect of neutralizing antibodies, this molecule behaves as a small organic neutralizing compound that may prove to have valuable pharmacological and therapeutic potential. 相似文献
2.
Lapidot A Peled A Berchanski A Pal B Kollet O Lapidot T Borkow G 《Biochimica et biophysica acta》2008,1780(6):914-920
Aminoglycoside-arginine conjugates (AACs) are multi-target HIV-1 inhibitors. The most potent AAC is neomycin hexa-arginine conjugate, NeoR6. We here demonstrate that NeoR6 interacts with CXCR4 without affecting CXCL12-CXCR4 ordinary chemotaxis activity or loss of CXCR4 cell surface expression. Importantly, NeoR6 alone does not affect cell migration, indicating that NeoR6 interacts with CXCR4 at a distinct site that is important for HIV-1 entry and mAb 12G5 binding, but not to CXCL12 binding or signaling sites. This is further supported by our modeling studies, showing that NeoR6 and CXCL12 bind to two distinct sites on CXCR4, in contrast with other CXCR4 inhibitors, e.g. T140 and AMD3100. This complementary utilization of chemical, biology, and computation analysis provides a powerful approach for designing anti-HIV-1 drugs without interfering with the natural function of CXCL12/CXCR4 binding. 相似文献
3.
Christopher T. Veldkamp Joshua J. Ziarek Jidong Su Harihar Basnet Richard Lennertz Joshua J. Weiner Francis C. Peterson John E. Baker Brian F. Volkman 《Protein science : a publication of the Protein Society》2009,18(7):1359-1369
The chemokine stromal cell‐derived factor‐1 (SDF‐1/CXCL12) directs leukocyte migration, stem cell homing, and cancer metastasis through activation of CXCR4, which is also a coreceptor for T‐tropic HIV‐1. Recently, SDF‐1 was shown to play a protective role after myocardial infarction, and the protein is a candidate for development of new anti‐ischemic compounds. SDF‐1 is monomeric at nanomolar concentrations but binding partners promote self‐association at higher concentrations to form a typical CXC chemokine homodimer. Two NMR structures have been reported for the SDF‐1 monomer, but only one matches the conformation observed in a series of dimeric crystal structures. In the other model, the C‐terminal helix is tilted at an angle incompatible with SDF‐1 dimerization. Using a rat heart explant model for ischemia/reperfusion injury, we found that dimeric SDF‐1 exerts no cardioprotective effect, suggesting that the active species is monomeric. To resolve the discrepancy between existing models, we solved the NMR structure of the SDF‐1 monomer in different solution conditions. Irrespective of pH and buffer composition, the C‐terminal helix remains tilted at an angle with no evidence for the perpendicular arrangement. Furthermore, we find that phospholipid bicelles promote dimerization that necessarily shifts the helix to the perpendicular orientation, yielding dipolar couplings that are incompatible with the NOE distance constraints. We conclude that interactions with the alignment medium biased the previous structure, masking flexibility in the helix position that may be essential for the distinct functional properties of the SDF‐1 monomer. 相似文献
4.
In addition to its role as neurotransmitter, serotonin (5-HT) is an important modulator of inflammation and immunity. Here, we report novel findings suggesting a 5-HT involvement in T cell migration. In particular, we show that 5-HT tunes the responsiveness of human T lymphocytes to the broadly expressed chemokine CXCL12 in transwell migration assays. By real-time PCR, western blot analysis and electrophysiological patch clamp experiments, we demonstrate that the type 3 5-HT receptor (5-HT(3)) is functionally expressed in human primary T cells. In addition, specific 5-HT(3) receptor agonists selectively decrease T cell migration towards gradients of CXCL12 but not of inflammatory chemokines, such as CCL2 and CCL5. In transmigration experiments, 5-HT(3) receptor stimulation reverts the inhibitory effect of endothelial-bound CXCL12 on T cell migration. Our data suggest that the reduced T cell responsiveness to CXCL12 induced by 5-HT may occur to facilitate T cell extravasation and migration into inflamed tissues. 相似文献
5.
Põlajeva J Sjösten AM Lager N Kastemar M Waern I Alafuzoff I Smits A Westermark B Pejler G Uhrbom L Tchougounova E 《PloS one》2011,6(9):e25222
Glioblastoma multiforme (GBM) is the most common and malignant form of glioma with high mortality and no cure. Many human cancers maintain a complex inflammatory program triggering rapid recruitment of inflammatory cells, including mast cells (MCs), to the tumor site. However, the potential contribution of MCs in glioma has not been addressed previously. Here we report for the first time that MCs infiltrate KRas+Akt-induced gliomas, using the RCAS/TV-a system, where KRas and Akt are transduced by RCAS into the brains of neonatal Gtv-a- or Ntv-a transgenic mice lacking Ink4a or Arf. The most abundant MC infiltration was observed in high-grade gliomas of Arf-/- mice. MC accumulation could be localized to the vicinity of glioma-associated vessels but also within the tumor mass. Importantly, proliferating MCs were detected, suggesting that the MC accumulation was caused by local expansion of the MC population. In line with these findings, strong expression of stem cell factor (SCF), i.e. the main MC growth factor, was detected, in particular around tumor blood vessels. Further, glioma cells expressed the MC chemotaxin CXCL12 and MCs expressed the corresponding receptor, i.e. CXCR4, suggesting that MCs could be attracted to the tumor through the CXCL12/CXCR4 axis. Supporting a role for MCs in glioma, strong MC infiltration was detected in human glioma, where GBMs contained significantly higher MC numbers than grade II tumors did. Moreover, human GBMs were positive for CXCL12 and the infiltrating MCs were positive for CXCR4. In conclusion, we provide the first evidence for a role for MCs in glioma. 相似文献
6.
Skrzydelski D Guyon A Daugé V Rovère C Apartis E Kitabgi P Nahon JL Rostène W Parsadaniantz SM 《Journal of neurochemistry》2007,102(4):1175-1183
We recently demonstrated that dopaminergic (DA) neurons of the rat substantia nigra constitutively expressed CXCR4, receptor for the chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 (SDF-1). To check the physiological relevance of such anatomical observation, in vitro and in vivo approaches were used. Patch clamp recording of DA neurons in rat substantia nigra slices revealed that SDF-1 (10 nmol/L) induced: (i) a depolarization and increased action potential frequency; and (ii) switched the firing pattern of depolarized DA neurons from a tonic to a burst firing mode. This suggests that SDF-1 could increase DA release from neurons. Consistent with this hypothesis, unilateral intranigral injection of SDF-1 (50 ng) in freely moving rat decreased DA content and increased extracellular concentrations of DA and metabolites in the ipsilateral dorsal striatum, as shown using microdialysis. Furthermore, intranigral SDF-1 injection induced a contralateral circling behavior. These effects of SDF-1 were mediated via CXCR4 as they were abrogated by administration of a selective CXCR4 antagonist. Altogether, these data demonstrate that SDF-1, via CXCR4, activates nigrostriatal DA transmission. They show that the central functions of chemokines are not restricted, as originally thought, to neuroinflammation, but extend to neuromodulatory actions on well-defined neuronal circuits in non-pathological conditions. 相似文献
7.
During the development and adult life of multicellular organisms cells move from one location to another as they assemble into organs, seal a wound or fight pathogens. For navigation, migrating cells follow cues that guide them to their final position. Frequently, a single cue simultaneously guides different cells to different positions. Recent studies of one such cue-the chemokine SDF1-suggest strategies for how the animal achieves this task without causing erroneous migration. 相似文献
8.
9.
The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes 总被引:29,自引:0,他引:29
Balabanian K Lagane B Infantino S Chow KY Harriague J Moepps B Arenzana-Seisdedos F Thelen M Bachelerie F 《The Journal of biological chemistry》2005,280(42):35760-35766
Combined phylogenetic and chromosomal location studies suggest that the orphan receptor RDC1 is related to CXC chemokine receptors. RDC1 provides a co-receptor function for a restricted number of human immunodeficiency virus (HIV) isolates, in particular for the CXCR4-using HIV-2 ROD strain. Here we show that CXCL12, the only known natural ligand for CXCR4, binds to and signals through RDC1. We demonstrate that RDC1 is expressed in T lymphocytes and that CXCL12-promoted chemotaxis is inhibited by an anti-RDC1 monoclonal antibody. Concomitant blockade of RDC1 and CXCR4 produced additive inhibitory effects in CXCL12-induced T cell migration. Furthermore, we provide evidence that interaction of CXCL12 with RDC1 is specific, saturable, and of high affinity (apparent KD approximately 0.4 nM). In CXCR4-negative cells expressing RDC1, CXCL12 promotes internalization of the receptor and chemotactic signals through RDC1. Collectively, our data indicate that RDC1, which we propose to rename as CXCR7, is a receptor for CXCL12. 相似文献
10.
The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles
Abdelhak Belmadani Hosung JungDongjun Ren Richard J. Miller 《Differentiation; research in biological diversity》2009
Mouse skin melanocytes originate from the neural crest and subsequently invade the epidermis and migrate into the hair follicles (HF) where they proliferate and differentiate. Here we demonstrate a role for the chemokine SDF-1/CXCL12 and its receptor CXCR4 in regulating the migration and positioning of melanoblasts during HF formation and cycling. CXCR4 expression by melanoblasts was upregulated during the anagen phase of the HF cycle. CXCR4-expressing cells in the HF also expressed the stem cell markers nestin and LEX, the neural crest marker SOX10 and the cell proliferation marker PCNA. SDF-1 was widely expressed along the path taken by migrating CXCR4-expressing cells in the outer root sheath (ORS), suggesting that SDF-1-mediated signaling might be required for the migration of CXCR4 cells. Skin sections from CXCR4-deficient mice, and skin explants treated with the CXCR4 antagonist AMD3100, contained melanoblasts abnormally concentrated in the epidermis, consistent with a defect in their migration. SDF-1 acted as a chemoattractant for FACS-sorted cells isolated from the anagen skin of CXCR4–EGFP transgenic mice in vitro, and AMD3100 inhibited the SDF-1-induced migratory response. Together, these data demonstrate an important role for SDF-1/CXCR4 signaling in directing the migration and positioning of melanoblasts in the HF. 相似文献
11.
Danel K Larsen LM Pedersen EB Sanna G La Colla P Loddo R 《Bioorganic & medicinal chemistry》2008,16(1):511-517
This paper describes the synthesis and the antiviral activities of dimeric compounds derived from homo and asymmetric combinations of N-1 propynyloxymethyl analogues 1a,b of MKC-442, an N-1 4-iodobenzyloxymethyl analogue of TNK-651 5, potent contraceptive norgestrel and AZT. They were obtained by Sonogashira reaction, 'click' chemistry or Pd-catalyzed oxidative coupling. The iodo precursor 5 turned out as a potent compound against wild type and mutated HIV-1 virus. All dimeric compounds showed lower activity against HIV-1 than MKC-442, except the asymmetric dimer of AZT and 1a which showed an activity comparable to MKC-442. 相似文献
12.
13.
14.
Yao X Chong H Zhang C Waltersperger S Wang M Cui S He Y 《The Journal of biological chemistry》2012,287(9):6788-6796
Sifuvirtide (SFT) is an electrostatically constrained α-helical peptide fusion inhibitor showing potent anti-HIV activity, good safety, and pharmacokinetic profiles, and it is currently under phase II clinical trials in China. In this study, we demonstrate its potent and broad anti-HIV activity by using diverse HIV-1 subtypes and variants, including subtypes A, B, and C that dominate the AIDS epidemic worldwide, and subtypes B', CRF07_BC, and CRF01_AE recombinants that are currently circulating in China, and those possessing cross-resistance to the first and second generation fusion inhibitors. To elucidate its mechanism of action, we determined the crystal structure of SFT in complex with its target N-terminal heptad repeat region (NHR) peptide (N36), which fully supports our rational inhibitor design and reveals its key motifs and residues responsible for the stability and anti-HIV activity. As anticipated, SFT adopts fully helical conformation stabilized by the multiple engineered salt bridges. The designing of SFT also provide novel inter-helical salt bridges and hydrogen bonds that improve the affinity of SFT to NHR trimer. The extra serine residue and acetyl group stabilize α-helicity of the N-terminal portion of SFT, whereas Thr-119 serves to stabilize the hydrophobic NHR pocket. In addition, our structure demonstrates that the residues critical for drug resistance, located at positions 37, 38, 41, and 43 of NHR, are irreplaceable for maintaining the stable fusogenic six-helix bundle structure. Our data present important information for developing SFT for clinical use and for designing novel HIV fusion inhibitors. 相似文献
15.
Andreola ML Pileur F Calmels C Ventura M Tarrago-Litvak L Toulmé JJ Litvak S 《Biochemistry》2001,40(34):10087-10094
16.
17.
18.
Veldkamp CT Seibert C Peterson FC Sakmar TP Volkman BF 《Journal of molecular biology》2006,359(5):1400-1409
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand. 相似文献
19.
Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12
Stebler J Spieler D Slanchev K Molyneaux KA Richter U Cojocaru V Tarabykin V Wylie C Kessel M Raz E 《Developmental biology》2004,272(2):351-361
As in many other animals, the primordial germ cells (PGCs) in avian and reptile embryos are specified in positions distinct from the positions where they differentiate into sperm and egg. Unlike in other organism however, in these embryos, the PGCs use the vascular system as a vehicle to transport them to the region of the gonad where they exit the blood vessels and reach their target. To determine the molecular mechanisms governing PGC migration in these species, we have investigated the role of the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) in guiding the cells towards their target in the chick embryo. We show that sdf-1 mRNA is expressed in locations where PGCs are found and towards which they migrate at the time they leave the blood vessels. Ectopically expressed chicken SDF-1alpha led to accumulation of PGCs at those positions. This analysis, as well as analysis of gene expression and PGC behavior in the mouse embryo, suggest that in both organisms, SDF-1 functions during the second phase of PGC migration, and not at earlier phases. These findings suggest that SDF-1 is required for the PGCs to execute the final migration steps as they transmigrate through the blood vessel endothelium of the chick or the gut epithelium of the mouse. 相似文献
20.
Genomic diversity and antigenic variation of HIV-1: links between pathogenesis, epidemiology and vaccine development 总被引:11,自引:0,他引:11
Recent analysis of primate lentivirus genomes indicates that lentiviruses have infected primates for hundreds of years. The pathogenicity of such viruses may fluctuate due to the high evolution rate of some parts of the viral genome. Fixed nucleic acid substitutions in the gag gene appear to be caused by random fixation of selectively neutral mutants, whereas nonrandom fixation of selectively advantageous mutants, as has been observed for MHC molecules and serine protease inhibitors, appears to be operational for some hypervariable env gene regions. The former is characterized by an excess of silent mutations independent of the rate of change, the latter by an excess of nonsilent mutations. This latter type of selection may especially characterize the third variable region of the external HIV envelope (V3), which contains the principal neutralization domain. 相似文献