首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three species of unintegrated viral DNAs were found in permissive cells infected with baboon type C virus. The major species was a 9.0-kilobase (kb) linear DNA that was infectious. A restriction endonuclease map of this DNA was constructed and oriented with respect to the viral RNA. The linear DNA had a 0.6-kb sequence repeated at each terminus. These terminal repeat sequences were required for infectivity of the viral DNA. The minor species of the unintegrated viral DNAs were covalently closed circles of 9.0 and 8.4 kb. The smaller circle was in two- to threefold excess over the larger circle. The difference appeared to be that the smaller circle lacked one of the two 0.6-kb repeat sequences found in the larger circle. Restriction endonuclease maps of the integrated viral DNAs were constructed, and the sequences on both viral DNA and cellular DNA that are involved in integration were determined. The integrated viral DNA map was identical to that of the unintegrated infectious 9.0-kb linear DNA. Therefore, a specific site in the terminal repeat sequence of the viral DNA was used to integrate with the host cell DNA. The sizes of the cellular DNA fragments were different from clone to clone but stable with cell passage. Therefore, many sites in the cell DNA can recombine with the viral DNA.  相似文献   

2.
Characterization of replicative form (RF) DNA of mink enteritis virus (MEV) was carried out. Most of the RF DNA were bound to terminal protein but some were free from the protein. The protein-free RF DNA increased about 7 times from 30 to 50 hr post-infection, while the DNA with protein increased less. The molecules of the replicative intermediate which were partially single-stranded DNA and bound to terminal protein were present. Two terminal conformations, "extended" and "turnaround," were observed in both ends of both terminal protein-bound and protein-free RF DNA. The 5' end labeling revealed that 5' ends of protein-free RF DNA were not blocked to phosphorylation by an amino acid or an oligopeptide which attaches to 5' ends of proteolytically deproteinized RF DNA. Restriction analysis of incomplete RF DNA which was partially double-stranded DNA showed that extended conformation was dominant in such incomplete RF molecules.  相似文献   

3.
Embryos of the silkworm, Bombyx mori L., were dispersed by trypsin and the dissociated cells were cultured for infection with nuclear polyhedrosis virus (NPV) of the silkworm. The monolayer and suspension cultures were infected with NPV. RNA and DNA syntheses in the normal and NPV-infected cells were measured by incorporation of 32P into RNA and DNA fractions. RNA and DNA syntheses in the cells after infection significantly increased over those in control cells (mock infection). The effects of actinomycin D, chloramphenicol and mitomycin C on RNA and DNA syntheses in infected cells were examined. The syntheses were inhibited by the antibiotics. It was suggested that the cellular DNA synthesis was inhibited by the viral infection, because the mitomycin C-resistant DNA synthesis was found in the normal cells but not in the infected cells treated with mitomycin C. The rate of DNA synthesis induced by NPV was immediately dropped to that of control cells by addition of chloramphenicol, while the RNA synthesis induced by NPV was not affected for 6 hr after the addition of chloramphenicol. If the antibiotic did not affect the size of precursor pools, this event suggested that the RNA polymerase concerned with viral RNA synthesis was more stable than the DNA polymerase participating in the viral DNA synthesis. The viral DNA as templates for RNA and DNA syntheses was decomposed by mitomycin C.  相似文献   

4.
A molecular dynamics simulation was used to assess the effect on the elasticity of a DNA fragment and the efficiency of DNA binding for actinomycins (antibiotics that are used in chemotherapy for certain oncology diseases). Hydroxyl and amino groups that were introduced as substituents in the phenoxazine ring of actinomycin were tested for their effect on the dynamic behavior and stability of antibiotic–DNA complexes. The Young modulus was calculated for DNA, DNA–actinomycin, DNA–7-hydroxyactinomycin, and DNA–7-aminoactinomycin. The free energy of complexation with DNA was calculated for actinomycin and its two analogs. The substituents were assumed to structurally stabilize the DNA fragment via additional hydrogen bonding.  相似文献   

5.
The substrate specificity of 49+-enzyme was investigated in vitro. The enzyme showed a marked preference for rapidly sedimenting T4 DNA (greater than 1000 S) when helix-destabilizing proteins from Escherichia coli or phage T4 were added to the reaction. Regular replicative T4 DNA (200-S DNA) or denatured T4 DNA was not cleaved by the enzyme in the presence of these proteins but if they were omitted from the reaction both DNAs become good substrates for the enzyme. 200-S DNA was cleaved at its natural sites of single strandedness which occur at one-genome intervals. Gaps in T4 DNA which were constructed by treatment of a nicked DNA with exonuclease III were also cleaved by 49+-enzyme in the absence of helix-destabilizing proteins. Single-stranded T4 DNA was extensively degraded and up to 50% of the material was found to be acid-soluble in a limit digest. The degradation products were predominantly oligonucleotides of random size. No preference for a 5'-terminal nucleotide was observed in material from a limit digest with M13 DNA. Double-stranded DNA was nicked upon exposure to 49+-enzyme and double-strand breakage finally occurred by an accumulation of single-strand interruptions. No acid-soluble material was produced from native T4 DNA. The introduction of nicks in native DNA did not improve its properties as a substrate for the enzyme. Double-stranded DNA was about 100-fold less sensitive to the enzyme than single-stranded DNA.  相似文献   

6.
A Saitoh  S Tada  T Katada    T Enomoto 《Nucleic acids research》1995,23(11):2014-2018
Many prokaryotic and viral DNA helicases involved in DNA replication stimulate their cognate DNA primase activity. To assess the stimulation of DNA primase activity by mammalian DNA helicases, we analyzed the synthesis of oligoribonucleotides by mouse DNA polymerase alpha-primase complex on single-stranded circular M13 DNA in the presence of mouse DNA helicase B. DNA helicase B was purified by sequential chromatography through eight columns. When the purified DNA helicase B was applied to a Mono Q column, the stimulatory activity for DNA primase-catalyzed oligoribonucleotide synthesis and DNA helicase and DNA-dependent ATPase activities of DNA helicase B were co-eluted from the column. The synthesis of oligoribonucleotides 5-10 nt in length was markedly stimulated by DNA helicase B. The synthesis of longer species of oligoribonucleotides, which were synthesized at a low level in the absence of DNA helicase B, was inhibited by DNA helicase B. The stimulatory effect of DNA helicase B was marked at low template concentrations and little or no effect was observed at high concentrations. The mouse single-stranded DNA binding protein, replication protein A (RP-A), inhibited the primase activity of the DNA polymerase alpha-primase complex and DNA helicase B partially reversed the inhibition caused by RP-A.  相似文献   

7.
The effects of polyamines on DNA synthesis in vitro using various subcellular DNA polymerase fractions from normal and tumour-bearing rat livers, and tumour cells were investigated. When nuclear and mitochondrial DNA polymerase fractions were used, DNA synthesis on activated DNA was increased 3.5-8-fold by the addition of 20 mM putrescine or cadaverine. However, DNA synthesis was not stimulated by the addition of spermidine or spermine at any concentration tested. In contrast, DNA synthesis using the cytoplasmic DNA polymerase fraction was not stimulated at various concentrations of any of the four polyamines tested. The stimulatory effects of putrescine and cadaverine were absent when nuclear fractions from tumour-bearing rat liver or from tumour cells were used. In addition, in vitro DNA synthesis was not stimulated by 20 mM putrescine or cadaverine when nuclear extracts from the livers of rats administered putrescine subcutaneously were used. The specific activities of DNA polymerases extracted from tumour cells and tumour-bearing rat liver were already fully stimulated. These results suggest that DNA polymerases in tumour cells and tumour-bearing liver cells are stimulated by trapped putrescine produced in tumour cells and are thus no longer activated by exogenous putrescine.  相似文献   

8.
The effects of the inhibitors 2'3' dideoxythymidine triphosphate (ddTTP) and 1-beta-D-arabinofuranosyl cytosine triphosphate (araCTP) on DNA synthesis in isolated S-phase HeLa S3 nuclei have been examined. These effects are compared with the effects of the same inhibitors in partially purified preparations of DNA polymerases alpha and beta. The effect of ddTTP on partially purified DNA polymerase gamma was also tested. DNA polymerases beta and gamma were very sensitive to ddTTP whereas DNA polymerase alpha and DNA synthesis in isolated nuclei were quite resistant. The synthesis and subsequent ligation of primary DNA pieces ('Okazaki fragments') were not affected by the presence of this inhibitor. DNA synthesis in isolated nuclei and DNA polymerase alpha activity were very sensitive to araCTP whereas DNA polymerase beta was almost totally resistant to the inhibitor. The results indicate a major role for DNA polymerase alpha in DNA replication.  相似文献   

9.
An in vivo 5'-bromodeoxyuridine (BrdUrd) labeled DNA probe was used for in situ DNA-RNA hybridization. BrdUrd was incorporated into plasmid DNA by inoculating E. coli with Luria-Bertani (LB) culture medium containing 500 mg/L of BrdUrd. After purification of the plasmid DNA, specific probes of the defined DNA fragments, which contained the cloned insert and short stretches of the vector DNA, were generated by restriction endonuclease. The enzymatic digestion pattern of the BrdUrd-labeled plasmid DNA was the same as that of the non-labeled one. BrdUrd was incorporated in 15%-20% of the total DNA, that is, about 80% of the thymidine was replaced by BrdUrd. Picogram amounts of the BrdUrd-labeled DNA probe itself and the target DNA were detectable on nitrocellulose filters in dot-blot spot and hybridization experiments using a peroxidase/diaminobenzidine combination. The BrdUrd-labeled DNA probe was efficiently hybridized with both single stranded DNA on nitrocellulose filters and cellular mRNA in in situ hybridization experiments. Through the reaction with BrdUrd in single stranded tails, hybridized probes were clearly detectable with fluorescent microscopy using a FITC-conjugated monoclonal anti-BrdUrd antibody. The in vivo labeling method did not require nick translation steps or in vitro DNA polymerase reactions. Sensitive, stable and efficient DNA probes were easily obtainable with this method.  相似文献   

10.
The patterns and sites of integration of adenovirus type 12 (Ad12) DNA were determined in three lines of Ad12-transformed hamster cells and in two lines of Ad12-induced hamster tumor cells. The results of a detailed analysis can be summarized as follows. (i) All cell lines investigated contained multiple copies (3 to 22 genome equivalents per cell in different lines) of the entire Ad12 genome. In addition, fragments of Ad12 DNA also persisted separately in non-stoichiometric amounts. (ii) All Ad12 DNA copies were integrated into cellular DNA. Free viral DNA molecules did not occur. The terminal regions of Ad12 DNA were linked to cellular DNA. The internal parts of the integrated viral genomes, and perhaps the entire viral genome, remained colinear with virion DNA. (iii) Except for line HA12/7, there were fewer sites of integration than Ad12 DNA molecules persisting. This finding suggested either that viral DNA was integrated at identical sites in repetitive DNA or, more likely, that one or a few viral DNA molecules were amplified upon integration together with the adjacent cellular DNA sequences, leading to a serial arrangement of viral DNA molecules separated by cellular DNA sequences. Likewise, in the Ad12-induced hamster tumor lines (CLAC1 and CLAC3), viral DNA was linked to repetitive cellular sequences. Serial arrangement of Ad12 DNA molecules in these lines was not likely. (iv) In general, true tandem integration with integrated viral DNA molecules directly abutting each other was not found. Instead, the data suggested that the integrated viral DNA molecules were separated by cellular or rearranged viral DNA sequences. (v) The results of hybridization experiments, in which a highly specific probe (143-base pair DNA fragment) derived from the termini of Ad12 DNA was used, were not consistent with models of integration involving true tandem integration of Ad12 DNA or covalent circularization of Ad12 DNA before insertion into the cellular genome. (vi) Evidence was presented that a small segment at the termini of the integrated Ad12 DNA in cell lines HA12/7, T637, and A2497-3 was repeated several times. The exact structures of these repeat units remained to be determined. The occurrence of these units might reflect the mechanism of amplification of viral and cellular sequences in transformed cell lines.  相似文献   

11.
鸡肠道微生物菌群经PCR-DGGE分析,回收PCR-DGGE分析胶上的一条DNA片段,回收的DNA片段再重复进行2次PCR-DGGE分析,以及分别用PCR反复循环扩增和PCR高保真酶扩增后再进行DGGE分析等方法研究PCR-DGGE分析中多条带产生原因。结果显示PCR-DGGE分析中多条带产生原因可能是作PCR扩增模板的DNA混杂有少量其他DNA片段,多条带现象不易被消除。DGGE分析胶上的DNA片段测序时,将该DNA片段回收、PCR扩增后克隆,提取多个阳性克隆菌的质粒DNA片段,分别与其原目的DNA片段进行DGGE分析,在DGGE分析胶上选取与原目的DNA片段处于同一电泳位置的质粒DNA测序,提高测序的准确性。  相似文献   

12.
A new molecular hybridization approach to the analysis of complex genomes has been developed. Tracer and driver DNAs were digested with the same restriction enzyme(s), and tracer DNA was labeled with 32P using T4 DNA polymerase. Tracer DNA was mixed with an excess amount of driver, and the mixture was electrophoresed in an agarose gel. Following electrophoresis, DNA was alkali-denatured in situ and allowed to reanneal in the gel, so that tracer DNA fragments could hybridize to the driver only when homologous driver DNA sequences were present at the same place in the gel, i.e. within a restriction fragment of the same size. After reannealing, unhybridized single-stranded DNA was digested in situ with S1 nuclease. The hybridized tracer DNA was detected by autoradiography. The general applicability of this technique was demonstrated in the following experiments. The common EcoRI restriction fragments were identified in the genomes of E. coli and four other species of bacteria. Two of these fragments are conserved in all Enterobacteriaceae. In other experiments, repeated EcoRI fragments of eukaryotic DNA were visualized as bands of various intensity after reassociation of a total genomic restriction digest in the gel. The situation of gene amplification was modeled by the addition of varying amounts of lambda phage DNA to eukaryotic DNA prior to restriction enzyme digestion. Restriction fragments of lambda DNA were detectable at a ratio of 15 copies per chicken genome and 30 copies per human genome. This approach was used to detect amplified DNA fragments in methotrexate (MTX)-resistant mouse cells and to identify commonly amplified fragments in two independently derived MTX-resistant lines.  相似文献   

13.
Viral and complementary strand circular DNA molecules were isolated from intracellular bacteriophage f1 replicative-form DNA. Soluble protein extracts of Escherichia coli were used to examine the initiation of DNA synthesis on these DNA templates. The initiation of DNA synthesis on f1 viral strand DNA was catalyzed by E. coli DNA-dependent RNA polymerase, as was initiation of f1 viral strand DNA isolated from mature phage particles. The site of initiation was the same as that used in vivo. In contrast, no de novo initiation of DNA synthesis was detected on f1 complementary strand DNA. Control experiments demonstrated that the E. coli dnaB, dnaC, and dnaG initiation proteins were active under the conditions employed. The results suggest that the viral strand of the f1 replicative-form DNA molecule carries the same DNA synthesis initiation site as the viral strand packaged in mature phage, whereas the complementary strand of the replicative-form DNA molecule carries no site for de novo primer synthesis. These in vitro observations are consistent with the simple rolling circle model for f1 DNA replication in vivo proposed by Horiuchi and Zinder.  相似文献   

14.
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5′-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5′-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5′-GT*A and 5′- TGT* trinucleotide sequences, and 5′-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5′-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine–pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the ?3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.  相似文献   

15.
The hamster cell line HE5 has been derived from primary hamster embryo cells by transformation with human adenovirus type 2 (Ad2). Each cell contains 2-3 copies of Ad2 DNA inserted into host DNA at apparently identical sites. The site of the junction between the right terminus of Ad2 DNA and hamster cell DNA was cloned and sequenced. The eight [corrected] right terminal nucleotides of Ad2 DNA were deleted. The unoccupied cellular DNA sequence in cell line HE5 , corresponding to the site of the junction between Ad2 and hamster cell DNA, was also cloned; 120-130 nucleotides in the cellular DNA were found to be identical to the cellular DNA sequence in the cloned junction DNA fragment, up to the site of the junction. The unoccupied and the occupied cellular DNAs and the adjacent viral DNA exhibited a few short nucleotide homologies. Patch homologies ranging in length from dodeca - to octanucleotides were detected by computer analyses at locations more remote from the junction site. When the right terminal nucleotide sequence of Ad2 DNA was matched to randomly selected sequences of 401 nucleotides from vertebrate or prokaryotic DNA, similar homologies were observed. It is likely that foreign (viral) DNA can be inserted via short sequence homologies at many different sites of cellular DNA.  相似文献   

16.
De novo synthesis of DNA in human platelets   总被引:1,自引:0,他引:1  
Platelets, incubated with radiolabeled thymidine and purified free of contaminating nucleated cells, were analyzed for their ability to synthesize DNA. The only DNA species isolated from these purified platelets was mitochondrial DNA. The CsCl gradient-purified platelet DNA was treated with the restriction endonucleases EcoRI, HindIII and HpaI yielding the expected pattern for human mitochondrial DNA. Nitrocellulose blots of the electrophoresed, restriction endonuclease-treated DNA were fluorographed. All of the DNA fragments generated by the restriction enzymes were labeled, indicating de novo synthesis. This was further substantiated by inhibition of DNA synthesis by ethidium bromide and 2',3'-dideoxythymidine. Platelet DNA appeared to become greatly fragmented after 4 to 7 days storage while all of the thymidine incorporated was observed in intact mitochondrial DNA. These results indicate a continuous degradation of platelet mitochondrial DNA with no apparent repair mechanism. The ability of platelets to synthesize DNA may be associated with the protein synthetic capacity of platelets previously described.  相似文献   

17.
DNA fragments were isolated from serum of a patient with systemic lupus erythematosus. The majority of the DNA was between 150 and 250 base pairs in length. The DNA was cloned into phage M13, and 10 recombinants were sequenced. The average GC content of the DNA was higher than total human DNA (43% against 38%), with some fragments as high as 63%. This DNA is rich in alternating purine-pyrimidine segments that are potentially Z-DNA-forming regions.  相似文献   

18.
DNA context-specific effects of the association of proflavin, single-stranded DNA and DNA polymerase on DNA polymerization reactions were examined. Frameshift mutations induced by the presence of proflavin during in vitro DNA replication of a single-stranded DNA template by the Klenow fragment of Escherichia coli DNA polymerase I were sequenced. More than 80% of the frameshifts were one base-pair deletions opposite purine bases that were immediately 3' to pyrimidines. Purines (Pu) that were not adjacent to pyrimidines (Py) were not deletion sites. The remaining deletions were opposite template pyrimidines that were also immediately 3' to another pyrimidine. All pyrimidine site deletions occurred in the context 5' PyPyPu 3'. In additional experiments, the site-specific inhibition of processive DNA polymerization by proflavin was examined. A novel inhibition of polymerization was found opposite all pyrimidines in the template when proflavin-template complexes were exposed to ten seconds of white light. This inhibition of polymerization is reversible. Longer photoactivation led to an altered pattern of DNA sequence-specific inhibition that was not reversible. The role of DNA sequence-specific interactions of proflavin with DNA in proflavin mutagenesis is discussed.  相似文献   

19.
20.
Summary An in vivo 5-bromodeoxyuridine (BrdUrd) labeled DNA probe was used for in situ DNA-RNA hybridization. BrdUrd was incorporated into plasmid DNA by inoculating E. coli with Luria-Bertani (LB) culture medium containing 500 mg/L of BrdUrd. After purification of the plasmid DNA, specific probes of the defined DNA fragments, which contained the cloned insert and short stretches of the vector DNA, were generated by restriction endonuclease. The enzymatic digestion pattern of the BrdUrd-labeled plasmid DNA was the same as that of the non-labeled one. BrdUrd was incorporated in 15%–20% of the total DNA, that is, about 80% of the thymidine was replaced by BrdUrd. Picogram amounts of the BrdUrd-labeled DNA probe itself and the target DNA were detectable on nitrocellulose filters in dot-blot spot and hybridization experiments using a peroxidase/diaminobenzidine combination. The BrdUrd-labeled DNA probe was efficiently hybridized with both single stranded DNA on nitrocellulose filters and cellular mRNA in in situ hybridization experiments. Through the reaction with BrdUrd in single stranded tails, hybridized probes were clearly detectable with fluorescent microscopy using a FITC-conjugated monoclonal anti-BrdUrd antibody. The in vivo labeling method did not require nick translation steps or in vitro DNA polymerase reactions. Sensitive, stable and efficient DNA probes were easily obtainable with this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号