首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A strain of bakers'' yeast was isolated which could utilize cellobiose and other β-D-glucosides quantitatively as carbon and energy sources for growth. Cellobiose-grown cells contained a largely cryptic enzyme active against the chromogenic substrate p-nitrophenyl-β-D-glucoside. The patent (intact cell) activity of such cells was inhibited by azide and, competitively, by cellobiose; neither agent inhibited the β-glucosidase activity of lysed cells or of extracts. The enzyme induced by growth in cellobiose medium had no affinity for cellobiose as either substrate or inhibitor; its substrate specificity classifies it as an aryl-β-glucosidase. It was concluded that growth in cellobiose also induced the formation of a stereospecific and energy-dependent system whose function determined the rate at which intact cells could hydrolyze substrates of the intracellular β-glucosidase.  相似文献   

2.
Preferential Utilization of Cellobiose by Thermomonospora curvata   总被引:3,自引:1,他引:2       下载免费PDF全文
Thermomonospora curvata was cultivated on mineral salts medium containing glucose and cellobiose under conditions that increasingly favored the uptake of glucose. In each case cellobiose was utilized in preference to glucose and induced β-glucosidase and endoglucanase activity. [14C]glucose metabolism studies indicated that cellobiose was not cleaved by extracellular β-glucosidase and transported as glucose. No evidence of cellobiose phosphorylase or a cellobiose-specific phosphoenolpyruvate-phosphotransferase system was observed.  相似文献   

3.
Fermentation of Cellodextrins by Different Yeast Strains   总被引:1,自引:1,他引:0       下载免费PDF全文
The fermentation of cellodextrins by eight yeast species capable of fermenting cellobiose was monitored. Only two of these species, Torulopsis molischiana and T. wickerhamii, were able to ferment β-glucosides with a degree of polymerization between one and six. These two species showed exocellular β-glucosidase activity. Four other species were able to ferment cellotriose, and the last two species only fermented cellobiose. These latter six species produced a β-glucosidase capable of attacking cellodextrins, but this enzyme was endocellular.  相似文献   

4.
The CelA β-glucosidase of Azospirillum irakense, belonging to glycosyl hydrolase family 3 (GHF3), preferentially hydrolyzes cellobiose and releases glucose units from the C3, C4, and C5 oligosaccharides. The growth of a ΔcelA mutant on these cellobiosides was affected. In A. irakense, the GHF3 β-glucosidases appear to be functional alternatives for the GHF1 β-glucosidases in the assimilation of β-glucosides by other bacteria.  相似文献   

5.
Rates of phosphorolytic cleavage of β-glucan substrates were determined for cell extracts from Clostridium thermocellum ATCC 27405 and were compared to rates of hydrolytic cleavage. Reactions with cellopentaose and cellobiose were evaluated for both cellulose (Avicel)- and cellobiose-grown cultures, with more limited data also obtained for cellotetraose. To measure the reaction rate in the chain-shortening direction at elevated temperatures, an assay protocol was developed featuring discrete sampling at 60°C followed by subsequent analysis of reaction products (glucose and glucose-1-phosphate) at 35°C. Calculated rates of phosphorolytic cleavage for cell extract from Avicel-grown cells exceeded rates of hydrolytic cleavage by ≥20-fold for both cellobiose and cellopentaose over a 10-fold range of β-glucan concentrations (0.5 to 5 mM) and for cellotetraose at a single concentration (2 mM). Rates of phosphorolytic cleavage of β-glucosidic bonds measured in cell extracts were similar to rates observed in growing cultures. Comparisons of Vmax values indicated that cellobiose- and cellodextrin-phosphorylating activities are synthesized during growth on both cellobiose and Avicel but are subject to some degree of metabolic control. The apparent Km for phosphorolytic cleavage was lower for cellopentaose (mean value for Avicel- and cellobiose-grown cells, 0.61 mM) than for cellobiose (mean value, 3.3 mM).  相似文献   

6.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

7.
Escherichia coli wild-type cells form constitutively the enzyme phospho-β-glucosidase A, which has a high affinity for phosphorylated aromatic β-glucosides and a low affinity for phosphorylated β-methyl-glucoside. Phospho-β-glucosidase B and β-glucoside permease I are formed in aromatic β-glucoside-fermenting mutants. Mutants lacking phospho-β-glucosidases A and B have been isolated. These mutants showed a reduced rate of inducibility of the β-glucoside permease I. The restoration of phospho-β-glucosidase A or B activity resulted in an increased rate of induction of the β-glucoside permease I. The presence of the phospho-β-glucosidases was not required for the constitutive biosynthesis of the β-glucoside permease. Mutants selected for growth on β-methyl-glucoside as carbon source showed an increased level of constitutive phospho-β-glucosidase A activity. Gene bglD, the structural gene for phospho-β-glucosidase A, was mapped between the pyrE locus and the cluster bgl loci, whereas bglE, the regulatory site determining the hyperproduction of phospho-β-glucosidase A, was mapped between the bgl and ilv clusters. The bglE locus appears to have a regulatory effect on the expression of the bglD gene.  相似文献   

8.
In the leaf tissue of the cyanogenic plant Hevea brasiliensis, which contains large amounts of linamarin, there is no specific linamarase. In Hevea leaves only one β-glucosidase is detectable. It is responsible for the cleavage of all β-glucosides and β-galactosides occurring in Hevea leaf tissue, including the cyanogenic glucoside linamarin. Therefore, the enzyme is referred to as a β-glycosidase instead of the term β-glucosidase. This β-glycosidase has a broad substrate spectrum and occurs in multiple forms. These homo-oligomeric forms are interconvertible by dissociation-association processes. The monomer is a single protein of 64 kilodaltons.  相似文献   

9.
The 6-phospho-β-glucosidase BglA-2 (EC 3.2.1.86) from glycoside hydrolase family 1 (GH-1) catalyzes the hydrolysis of β-1,4-linked cellobiose 6-phosphate (cellobiose-6′P) to yield glucose and glucose 6-phosphate. Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo and complex forms of BglA-2 with thiocellobiose-6′P (a non-metabolizable analog of cellobiose-6′P) at 2.0 and 2.4 Å resolution, respectively. Similar to other GH-1 enzymes, the overall structure of BglA-2 from Streptococcus pneumoniae adopts a typical (β/α)8 TIM-barrel, with the active site located at the center of the convex surface of the β-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues, Tyr126, Tyr303, and Trp338, at subsite +1 of BglA-2 determine substrate specificity with respect to 1,4-linked 6-phospho-β-glucosides. Moreover, three additional residues, Ser424, Lys430, and Tyr432 of BglA-2, were found to play important roles in the hydrolytic selectivity toward phosphorylated rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite −1 may contribute to the catalytic and substrate selectivity with respect to structurally similar 6-phospho-β-galactosidases and 6-phospho-β-glucosidases assigned to the GH-1 family.  相似文献   

10.
Approximately 10–15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer), while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT), which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT) cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18−/−) or wild-type mice, bacterial recovery significantly increased in Jα18−/− compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18−/− compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis.  相似文献   

11.
Aspergillus oryzae was found to secrete two distinct β-glucosidases when it was grown in liquid culture on various substrates. The major form had a molecular mass of 130 kDa and was highly inhibited by glucose. The minor form, which was induced most effectively on quercetin (3,3′,4′,5,7-pentahydroxyflavone)-rich medium, represented no more than 18% of total β-glucosidase activity but exhibited a high tolerance to glucose inhibition. This highly glucose-tolerant β-glucosidase (designated HGT-BG) was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and anion-exchange chromatography. HGT-BG is a monomeric protein with an apparent molecular mass of 43 kDa and a pI of 4.2 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing polyacrylamide gel electrophoresis, respectively. Using p-nitrophenyl-β-d-glucoside as the substrate, we found that the enzyme was optimally active at 50°C and pH 5.0 and had a specific activity of 1,066 μmol min−1 mg of protein−1 and a Km of 0.55 mM under these conditions. The enzyme is particularly resistant to inhibition by glucose (Ki, 1.36 M) or glucono-δ-lactone (Ki, 12.5 mM), another powerful β-glucosidase inhibitor present in wine. A comparison of the enzyme activities on various glycosidic substrates indicated that HGT-BG is a broad-specificity type of fungal β-glucosidase. It exhibits exoglucanase activity and hydrolyzes (1→3)- and (1→6)-β-glucosidic linkages most effectively. This enzyme was able to release flavor compounds, such as geraniol, nerol, and linalol, from the corresponding monoterpenyl-β-d-glucosides in a grape must (pH 2.9, 90 g of glucose liter−1). Other flavor precursors (benzyl- and 2-phenylethyl-β-d-glucosides) and prunin (4′,5,7-trihydroxyflavanone-7-glucoside), which contribute to the bitterness of citrus juices, are also substrates of the enzyme. Thus, this novel β-glucosidase is of great potential interest in wine and fruit juice processing because it releases aromatic compounds from flavorless glucosidic precursors.β-Glucoside glucohydrolases, commonly called β-glucosidases, catalyze the hydrolysis of alkyl- and aryl-β-glucosides, as well as diglucosides and oligosaccharides. These enzymes are widely used in various biotechnological processes, including the production of fuel ethanol from cellulosic agricultural residues (4, 27, 48) and the synthesis of useful β-glucosides (21, 38). In the flavor industry, β-glucosidases are also key enzymes in the enzymatic release of aromatic compounds from glucosidic precursors present in fruits and fermentating products (13, 39). Indeed, many natural flavor compounds, such as monoterpenols, C-13 norisoprenoids, and shikimate-derived compounds, accumulate in fruits as flavorless precursors linked to mono- or diglycosides and require enzymatic or acidic hydrolysis for the liberation of their fragrances (41, 45). Finally, β-glucosidases can also improve the organoleptic properties of citrus fruit juices, in which the bitterness is in part due to a glucosidic compound, naringin (4′,5,7-trihydroxyflavanone-7-rhamnoglucoside), whose hydrolysis requires, in succession, an α-rhamnosidase and a β-glucosidase (33).It is now well-established that certain monoterpenols of grapes (e.g., linalol, geraniol, nerol, citronelol, α-terpineol, and linalol oxide), which are linked to diglycosides, such as 6-O-α-l-rhamnopyranosyl-, 6-O-α-l-arabinofuranosyl-, and 6-O-β-d-apiofuranosyl-β-d-glucosides, contribute significantly to the flavor of wine (15, 44). The enzymatic hydrolysis of these compounds requires a sequential reaction; first, an α-l-rhamnosidase, an α-l-arabinofuranosidase, or a β-d-apiofuranosidase cleaves the (1→6) osidic linkage, and then, the flavor compounds are liberated from the monoglucosides by the action of a β-glucosidase (18, 19). Unlike acidic hydrolysis, enzymatic hydrolysis is highly efficient and does not result in modifications of the aromatic character (16). However, grape and yeast glucosidases exhibit limited activity on monoterpenyl-glucosides during winemaking, and a large fraction of the aromatic precursors remains unprocessed (9, 16, 35). The addition of exogenous β-glucosidase during or following fermentation has been found to be the most effective way to improve the hydrolysis of the glycoconjugated aroma compounds in order to enhance wine flavor (2, 14, 39, 40). The ideal β-glucosidase should function and be stable at a low pH value (pH 2.5 to 3.8) and should be active at a high concentration of glucose (10 to 20%) and in the presence of 10 to 15% ethanol. However, most microbial β-glucosidases are very sensitive to glucose inhibition (4, 12, 47), as well as to inhibition by glucono-δ-lactone, another powerful β-glucosidase inhibitor produced by grape-attacking fungi which can be found in wine must at concentrations up to 2 g/liter (10).The need for more suitable enzymes has led us and other workers to search for novel β-glucosidases with the desired properties. Recently, we showed that an extracellular glucose-tolerant and pH-stable β-glucosidase can be produced by Aspergillus strains (17). However, the enzyme of interest represented only a minor fraction of total β-glucosidase activity, and the major form was highly sensitive to glucose inhibition. Aspergillus oryzae appeared to be the best producer of the minor form when it was grown on quercetin (3,3′,4′,5,7-pentahydroxyflavone), a phenolic flavonoid found in plant cell walls. This paper presents further data on the production and characterization of this novel highly glucose-tolerant β-glucosidase (designated HGT-BG) purified from the extracellular culture filtrate of A. oryzae grown on quercetin.  相似文献   

12.
1. The previous study (Conchie, Gelman & Levvy, 1967b) of the specificity of β-glucosidase, β-galactosidase and β-d-fucosidase in barley, limpet, almond emulsin and rat epididymis was extended to α-l-arabinosidase. 2. The inhibitory action of l-arabinono-(1→5)-lactone was tested against all four types of enzyme, and α-l-arabinosidase was examined for inhibition by glucono-, galactono- and d-fucono-lactone. 3. In emulsin, the enzyme that hydrolyses β-glucosides, β-galactosides and β-d-fucosides also hydrolyses α-l-arabinosides. Rat epididymis resembles emulsin except that, as already noted, it lacks β-glucosidase activity. 4. In the limpet, α-l-arabinosidase activity is associated with the enzyme that hydrolyses β-glucosides and β-d-fucosides, and not with the separate β-galactosidase. 5. The effects of the different lactones on the barley preparation suggest that α-l-arabinosidase activity is associated with the β-galactosidase rather than with the enzyme that hydrolyses β-glucosides and β-d-fucosides. Fractionation and heat-inactivation experiments indicate that there is also a separate α-l-arabinosidase in the preparation.  相似文献   

13.
Lactobacillus delbrueckii mutant Uc-3 utilizes both cellobiose and cellotriose efficiently, converting it into L(+) lactic acid. The enzyme activities of cellobiose and cellotriose utilization were determined for cell extracts, whole cells, and disrupted cells. Aryl-β-glucosidase activity was detected only for whole cells and disrupted cells, suggesting that these activities are cell bound. The mutant produced 90 g/liter of lactic acid from 100 g/liter of cellobiose with 2.25 g/liter/h productivity.  相似文献   

14.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on α-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus β-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of α-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of β-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying β-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

15.
Candida wickerhamii NRRL Y-2563 expressed β-glucosidase activity (3 to 8 U/ml) constitutively when grown aerobically in complex medium containing either glycerol, succinate, xylose, galactose, or cellobiose as the carbon source. The addition of a high concentration of glucose (>75 g/liter) repressed β-glucosidase expression (<0.3 U/ml); however, this yeast did produce β-glucosidase when the initial glucose concentration was ≤50 g/liter. When grown aerobically in medium containing glucose plus the above-listed carbon sources, diauxic utilization of the carbon source was observed and the expression of β-glucosidase was glucose repressed. Surprisingly, glucose repression did not occur when the cells were grown anaerobically. When grown anaerobically in medium containing 100 g of glucose per liter, C. wickerhamii produced 6 to 9 U of enzyme per ml and did not demonstrate diauxic utilization of glucose-cellobiose mixtures. To our knowledge, this is the first report of apparent derepression of a glucose-repressed enzyme by anaerobiosis.  相似文献   

16.
Cellobiose uptake and metabolism by Ruminococcus flavefaciens   总被引:1,自引:0,他引:1  
The cellulolytic ruminal bacterium Ruminococcus flavefaciens FD-1 utilizes cellobiose but not glucose as a substrate for growth. Cellobiose uptake by R. flavefaciens FD-1 was measured under anaerobic conditions (N2), using [G-3H]cellobiose. The rate of cellobiose uptake for early- or late-log-phase cellobiose-grown cells was 9 nmol/min per mg of whole-cell protein. Cellobiose uptake was inhibited by electron transport inhibitors, iron-reactive compounds, proton ionophores, sulfhydryl inhibitors, N,N-dicyclohexylcarbodiimide, and NaF, as well as lasalocid and monensin. The results support the existence of an active transport system for cellobiose. Transport of [U-14C]glucose was not detected with this system. Phosphorylation of cellobiose was not by a phosphoenolpyruvate-dependent system. Cellobiose phosphorylase activity was detected by both a coupled spectrophotometric assay and a discontinuous assay. The enzyme was produced constitutively in cellobiose-grown cells at a specific activity of 329 nmol/min per mg of cell-free extract protein.  相似文献   

17.
This paper describes the characterization of an intracellular β-glucosidase enzyme BGLII (Cel1a) and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). The expression pattern of bgl2 is similar to that of other cellulase genes known from this fungus, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene. The BGLII protein was produced in Escherichia coli, and its enzymatic properties were analyzed. It was shown to be a specific β-glucosidase, having no β-galactosidase side activity. It hydrolyzed both cellotriose and cellotetraose. BGLII exhibited transglycosylation activity, producing mainly cellotriose from cellobiose and sophorose and cellobiose from glucose. Antibodies raised against BGLII showed the presence of the enzyme in T. reesei cell lysates but not in the culture supernatant. Activity measurements and Western blot analysis of T. reesei strains expressing bgl2 from a constitutive promoter further confirmed the intracellular localization of this β-glucosidase.  相似文献   

18.
Since Saccharomyces cerevisiae lacks the cellulase complexes that hydrolyze cellulosic materials, which are abundant in the world, two types of hydrolytic enzymes involved in the degradation of cellulosic materials to glucose were genetically co-immobilized on its cell surface for direct utilization of cellulosic materials, one of the final goals of our studies. The genes encoding FI-carboxymethylcellulase (CMCase) and β-glucosidase from the fungus Aspergillus aculeatus were individually fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin and introduced into S. cerevisiae. The delivery of CMCase and β-glucosidase to the cell surface was carried out by the secretion signal sequence of the native signal sequence of CMCase and by the secretion signal sequence of glucoamylase from Rhizopus oryzae for β-glucosidase, respectively. The genes were expressed by the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The CMCase and β-glucosidase activities were detected in the cell pellet fraction, not in the culture supernatant. The display of CMCase and β-glucosidase proteins on the cell surface was confirmed by immunofluorescence microscopy. The cells displaying these cellulases could grow on cellobiose or water-soluble cellooligosaccharides as the sole carbon source. The degradation and assimilation of cellooligosaccharides were confirmed by thin-layer chromatography. This result showed that the cell surface-engineered yeast with these enzymes can be endowed with the ability to assimilate cellooligosaccharides. This is the first step in the assimilation of cellulosic materials by S. cerevisiae expressing heterologous cellulase genes.  相似文献   

19.
A newly isolated mesophilic anaerobe, Bacteroides cellulosolvens, has the ability to produce cellulase and to degrade cellulose to cellobiose and glucose. It does not utilize glucose, and it lacks β-glucosidase activity. This anaerobe appears to degrade cellulose to cellobiose by cellulase action, and the presence of cells appears necessary for the formation of glucose.  相似文献   

20.
Yeast strain Clavispora NRRL Y-50464 is able to produce cellulosic ethanol from lignocellulosic materials without addition of external β-glucosidase by simultaneous saccharification and fermentation. A β-glucosidase BGL1 protein from this strain was recently reported supporting its cellobiose utilization capability. Here, we report two additional new β-glucosidase genes encoding enzymes designated as BGL2 and BGL3 from strain NRRL Y-50464. Quantitative gene expression was analyzed and the gene function of BGL2 and BGL3 was confirmed by heterologous expression using cellobiose as a sole carbon source. Each gene was cloned and partially purified protein obtained separately for direct enzyme assay using varied substrates. Both proteins showed the highest specific activity at pH 5 and relatively strong affinity with a Km of 0.08 and 0.18 mM for BGL2 and BGL3, respectively. The optimum temperature was found to be 50°C for BGL2 and 55°C for BGL3. Both proteins were able to hydrolyze 1,4 oligosaccharides evaluated in this study. They also showed a strong resistance to glucose product inhibition with a Ki of 61.97 and 38.33 mM for BGL2 and BGL3, respectively. While BGL3 was sensitive showing a significantly reduced activity to 4% ethanol, BGL2 demonstrated tolerance to ethanol. Its activity was enhanced in the presence of ethanol but reduced at concentrations greater than 16%. The presence of the fermentation inhibitors furfural and HMF did not affect the enzyme activity. Our results suggest that a β-glucosidase gene family exists in Clavispora NRRL Y-50464 with at least three members in this group that validate its cellobiose hydrolysis functions for lower-cost cellulosic ethanol production. Results of this study confirmed the cellobiose hydrolysis function of strain NRRL Y-50464, and further supported this dual functional yeast as a candidate for lower-cost cellulosic ethanol production and next-generation biocatalyst development in potential industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号