首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maltose phosphorylase (MPase) gene of Bacillus sp. strain RK-1 was cloned by PCR with oligonucleotide primers designed on the basis of a partial N-terminal amino acid sequence of the purified enzyme. The MPase gene consisted of 2,655 bp encoding a theoretical protein with a Mr of 88,460, and had no secretion signal sequence, although most of the MPase activity was detected in the culture supernatant of RK-1. This cloned MPase gene and the trehalose phosphorylase (TPase) gene from Bacillus stearothermophilus SK-1 were efficiently expressed intracellularly under the control of the Bacillus amyloliquefaciens alpha-amylase promoter in Bacillus subtilis. The production yields were estimated to be more than 2 g of enzyme per liter of medium, about 250 times the production of the original strains, in a simple shake flask. About 60% of maltose was converted into trehalose by the simultaneous action of both enzymes produced in B. subtilis.  相似文献   

2.
A Butyrivibrio fibrisolvens H17c glgB gene, was isolated by direct selection for colonies that produced clearing on starch azure plates. The gene was expressed in Escherichia coli from its own promoter. The glgB gene consisted of an open reading frame of 1,920 bp encoding a protein of 639 amino acids (calculated Mr, 73,875) with 46 to 50% sequence homology with other branching enzymes. A limited region of 12 amino acids showed sequence similarity to amylases and glucanotransferases. The B. fibrisolvens branching enzyme was not able to hydrolyze starch but stimulated phosphorylase alpha-mediated incorporation of glucose into alpha-1,4-glucan polymer 13.4-fold. The branching enzyme was purified to homogeneity by a simple two-step procedure; N-terminal sequence and amino acid composition determinations confirmed the deduced translational start and amino acid sequence of the open reading frame. The enzymatic properties of the purified enzyme were investigated. The enzyme transferred chains of 5 to 10 (optimum, 7) glucose units, using amylose and amylopetin as substrates, to produce a highly branched polymer.  相似文献   

3.
The glgP gene, which codes for glycogen phosphorylase, was cloned from a genomic library of Escherichia coli. The nucleotide sequence of the glgP gene contained a single open reading frame encoding a protein consisting of 790 amino acid residues. The glgP gene product, a polypeptide of Mr 87,000, was confirmed by SDS-polyacrylamide gel electrophoresis. The deduced amino acid sequence showed that homology between glgP of E. coli and rabbit glgP, human glgP, potato glgP, and E. coli malP was 48.6, 48.6, 42.3, and 46.1%, respectively. Within this homologous region, the active site, glycogen storage site, and pyridoxal-5'-phosphate binding site are well conserved. The enzyme activity of glycogen phosphorylase increased after introduction on a multicopy of the glgP gene.  相似文献   

4.
Structure and properties of malic enzyme from Bacillus stearothermophilus   总被引:3,自引:0,他引:3  
The malic enzyme (EC 1.1.1.38) gene of Bacillus stearothermophilus was cloned in Escherichia coli, and the enzyme was purified to homogeneity from the E. coli clone. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, the enzyme catalyzes the decarboxylation of oxalacetate. The enzyme is a tetramer of Mr 200,000 consisting of four identical subunits of Mr 50,000. The pH optima for malate oxidation and pyruvate reduction are 8.0 and 6.0, respectively; and the optimum temperature is 55 degrees C. The enzyme strictly requires divalent metal cations for its activity, and the activity is enhanced 5-7 times by NH4+ and K+. Kinetic study shows that the values of the dissociation constant of the enzyme-coenzyme complex are 77 microM for NAD and 1.0 mM for NADP, indicating that the enzyme has a higher affinity for NAD than for NADP. The nucleotide sequence of the gene and its flanking regions was also found. A single open reading frame of 1434 base pairs encoding 478 amino acids was concluded to be that for the malic enzyme gene because the amino acid composition of the enzyme and the sequence of 16 amino acids from the amino terminus of the enzyme agreed well with those deduced from this open reading frame.  相似文献   

5.
The gene for leucine dehydrogenase (EC 1.4.1.9) from Bacillus stearothermophilus was cloned and expressed in Escherichia coli. The selection for the cloned gene was based upon activity staining of the replica printed E. coli cells. A transformant showing high leucine dehydrogenase activity was found to carry an about 9 kilobase pair plasmid, which contained 4.6 kilobase pairs of B. stearothermophilus DNA. The nucleotide sequence including the 1287 base pair coding region of the leucine dehydrogenase gene was determined by the dideoxy chain termination method. The translated amino acid sequence was confirmed by automated Edman degradation of several peptide fragments produced from the purified enzyme by trypsin digestion. The polypeptide contained 429 amino acid residues corresponding to the subunit (Mr 49,000) of the hexameric enzyme. Comparison of the amino acid sequence of leucine dehydrogenase with those of other pyridine nucleotide dependent oxidoreductases registered in a protein data bank revealed significant sequence similarity, particularly between leucine and glutamate dehydrogenases, in the regions containing the coenzyme binding domain and certain specific residues with catalytic importance.  相似文献   

6.
The expressed gene (pul) for a thermostable pullulanase from Clostridium thermohydrosulfuricum was cloned into Escherichia coli. The enzyme was purified from cell extracts of E. coli by thermoinactivation, ammonium sulphate precipitation and gel exclusion. The purified enzyme was characterized as monomer with both pullulanase and glucoamylase activities. The general physico-chemical and catalytic properties of this enzyme were obtained. In particular, pullulanase and glucoamylase activities were stable and optimally active at 65 degrees C. The pH optimum for activity was 5.8. The amino acid composition and amino acid sequence of N-terminal end were estimated.  相似文献   

7.
We have isolated a bacterium (TP-6) from the Indonesian fermented soybean, Tempeh, which produces a strong fibrinolytic protease and was identified as Bacillus subtilis. The protease (TPase) was purified to homogeneity by ammonium sulfate fractionation and octyl sepharose and SP sepharose chromatography. The N-terminal amino acid sequence of the 27.5 kDa enzyme was determined, and the encoding gene was cloned and sequenced. The result demonstrates that TPase is a serine protease of the subtilisin family consisting of 275 amino acid residues in its mature form. Its apparent K m and V max for the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-pNA were 259 μM and 145 μmol mg−1 min−1, respectively. The fibrinogen degradation pattern generated by TPase as a function of time was similar to that obtained with plasmin. In addition, N-terminal amino acid sequence analysis of the fibrinogen degradation products demonstrated that TPase cleaves Glu (or Asp) near hydrophobic acids as a P1 site in the α- and β-chains of fibrinogen to generate fragments D′, E′, and D′ similar to those generated by plasmin. On plasminogen-rich fibrin plates, TPase did not seem to activate fibrin clot lysis. Moreover, the enzyme converted the active plasminogen activator inhibitor-1 to the latent form.Seong-Bo Kim and Dong-Woo Lee contributed equally to the work.  相似文献   

8.
The gene encoding an acid endo-1,4-beta-glucanase from Bacillus sp. KSM-330 was cloned into the HindIII site of pBR322 and expressed in Escherichia coli HB101. The recombinant plasmid contained a 3.1 kb HindIII insert, 1.8 kb of which was sufficient for the expression of endoglucanase activity in E. coli HB101. Nucleotide sequencing of this region (1816 bp) revealed an open reading frame of 1389 bp. The protein deduced from this sequence was composed of 463 amino acids with an Mr of 51882. The deduced amino acid sequence from amino acids 56 through 75 coincided with the amino-terminal sequence of the endoglucanase, Endo-K, purified from culture of Bacillus sp. KSM-330. The deduced amino acid sequence of Endo-K had 30% homology with that of the celA enzyme from Clostridium thermocellum NCIB 10682 and 25% homology with that of the enzyme from Cellulomonas uda CB4. However, the Endo-K protein exhibited no homology with respect to either the nucleotide or the amino acid sequences of other endoglucanases from Bacillus that had been previously characterized. These results indicate that the gene for Endo-K in Bacillus sp. KSM-330 has evolved from an ancestral gene distinct from that of other Bacillus endoglucanases.  相似文献   

9.
吴襟  张树政 《生物工程学报》2008,24(10):1740-1746
从巨大芽孢杆菌(Bacillus megaterium)的全基因组DNA文库中筛选出一个b-淀粉酶基因amyG, 分析测定了其核苷酸序列并进行了诱导表达; 其中amyG编码的蛋白有545个氨基酸、分子量为60.194 kD, 与已报道的巨大芽孢杆菌DSM319的b-淀粉酶序列有着94.5%的同源性。经氨基酸序列比较分析发现, AmyG从N末端到C末端依次由信号肽域、糖基水解酶催化功能域和淀粉结合域3个功能域组成。其中催化功能域里含有第14家族糖基水解酶常见的几个高度保守的酶催化活性区。经多步纯化, 重组酶的比活共提高了7.4倍, 获得凝胶电泳均一的蛋白样品; 经SDS-PAGE电泳测定, 酶AmyG的分子量为57 kD。该酶的最适反应温度为60oC, 最适反应pH为7.0; 在温度不超过60oC时, 酶活较稳定; AmyG能迅速降解淀粉生成麦芽糖, 属于外切b-糖苷酶。  相似文献   

10.
By using a synthetic oligonucleotide probe identical to a part of the gene for the Escherichia coli major outer membrane lipoprotein, we have cloned a gene from E. coli chromosomal DNA. However, the cloned gene was not one of the lipoprotein genes. The amino acid sequence deduced from its nucleotide sequence shows extensive similarities instead to alpha-glucan phosphorylase (EC 2.4.1.1). The gene, glgP, is located immediately downstream from glgA, the gene for glycogen synthase. The glgP gene was inserted into pUC9 vector and expressed in the presence of the lac inducer. The gene product was purified to apparent homogeneity as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In all chromatographies, the protein was eluted accompanied by a low phosphorylase activity. The final preparation showed phosphorolytic activity to various alpha-glucans, although the specific activity was extremely low compared to other alpha-glucan phosphorylases under the standard assay conditions. Its enzymatic activity, however, increased almost linearly as the concentration of glucan increased, reaching a value comparable with those of other phosphorylases. The amino acid sequence deduced was compared with those of alpha-glucan phosphorylases from other sources.  相似文献   

11.
The complete amino acid sequence of bacterioferritin (cytochrome b1) from Escherichia coli-K12 has been derived from the nucleotide sequence of the cloned gene. It comprises 158 amino acid residues giving an Mr of 18,495. The identity of the gene product was confirmed by an 87 residue N-terminal sequence obtained from the purified protein, but it differs significantly from much of the previously published partial amino acid sequence (1). Secondary structure prediction indicates a high alpha-helical content consistent with a 4-helix-bundle conformation. The fully assembled bacterioferritin molecule comprising 24 identical subunits and 12 haem moieties is a tetracosamer with an Mr of approximately 452,000.  相似文献   

12.
We have purified the enzyme 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) from Escherichia coli to homogeneity by a newly devised procedure. The enzyme has been purified at least 2,000-fold in a 31% yield. The specific activity of the enzyme obtained is 7.4 times greater than any previous preparation from this source. The purified enzyme is specific for NADP. The protein also contains 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9) activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and behavior on a molecular sieving column suggest that the enzyme is a dimer of identical subunits. We have cloned the E. coli gene coding for the enzyme through the use of polymerase chain reaction based on primers designed from the NH2 terminal analysis of the isolated enzyme. We sequenced the gene. The derived amino acid sequence of the enzyme contains 287 amino acids of Mr 31,000. The sequence shows 50% identity to two bifunctional mitochondrial enzymes specific for NAD, and 40-45% identity to the presumed dehydrogenase/cyclohydrolase domains of the trifunctional C1-tetrahydrofolate synthase of yeast mitochondria and cytoplasm and human and rat cytoplasm. An identical sequence of 14 amino acids with no gaps is present in all 7 sequences.  相似文献   

13.
The amino acid sequence of rat brain prostaglandin D synthetase (Urade, Y., Fujimoto, N., and Hayaishi, O. (1985) J. Biol. Chem. 260, 12410-12415) was determined by a combination of cDNA and protein sequencing. cDNA clones specific for this enzyme were isolated from a lambda gt11 rat brain cDNA expression library. Nucleotide sequence analyses of cloned cDNA inserts revealed that this enzyme consisted of a 564- or 549-base pair open reading frame coding for a 188- or 183-amino acid polypeptide with a Mr of 21,232 or 20,749 starting at the first or second ATG. About 60% of the deduced amino acid sequence was confirmed by partial amino acid sequencing of tryptic peptides of the purified enzyme. The recognition sequence for N-glycosylation was seen at two positions of amino acid residues 51-53 (-Asn-Ser-Ser-) and 78-80 (-Asn-Leu-Thr-) counted from the first Met. Both sites were considered to be glycosylated with carbohydrate chains of Mr 3,000, since two smaller proteins with Mr 23,000 and 20,000 were found during deglycosylation of the purified enzyme (Mr 26,000) with N-glycanase. The prostaglandin D synthetase activity was detected in fusion proteins obtained from lysogens with recombinants coding from 34 and 19 nucleotides upstream and 47 and 77 downstream from the first ATG, indicating that the glycosyl chain and about 20 amino acid residues of N terminus were not essential for the enzyme activity. The amino acid composition of the purified enzyme indicated that about 20 residues of hydrophobic amino acids of the N terminus are post-translationally deleted, probably as a signal peptide. These results, together with the immunocytochemical localization of this enzyme to rough-surfaced endoplasmic reticulum and other nuclear membrane of oligodendrocytes (Urade, Y., Fujimoto, N., Kaneko, T., Konishi, A., Mizuno, N., and Hayaishi, O. (1987) J. Biol. Chem. 262, 15132-15136) suggest that this enzyme is a membrane-associated protein.  相似文献   

14.
The enzyme 3-phosphoglycerate mutase was purified 192-fold from Streptomyces coelicolor, and its N-terminal sequence was determined. The enzyme is tetrameric with a subunit Mr of 29,000. It is 2,3-bisphosphoglycerate dependent and inhibited by vanadate. The gene encoding the enzyme was cloned by using a synthetic oligonucleotide probe designed from the N-terminal peptide sequence, and the complete coding sequence was determined. The deduced amino acid sequence is 64% identical to that of the phosphoglycerate mutase of Saccharomyces cerevisiae and has substantial identity to those of other phosphoglycerate mutases.  相似文献   

15.
A cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli was purified 88-fold by chromatography on High Q and hydroxyapatite. N-terminal amino acid sequence analyses confirmed that the cellulase represented the product of the cellulase gene Cel B2. The purified enzyme possessed high activity toward barley beta-glucan, lichenan, carboxymethyl cellulose (CMC), xylan, but not toward laminarin and pachyman. In addition, the cloned enzyme was able to hydrolyze p-nitrophenyl (PNP)-cellobioside, PNP-cellotrioside, PNP-cellotetraoside, PNP-cellopentaoside, but not PNP-glucopyranoside. The specific activity of the cloned enzyme on barley beta-glucan was 297 units/mg protein. The purified enzyme appeared as a single band in SDS-polyacrylamide gel electrophoresis and the molecular mass of this enzyme (58000) was consistent with the value (56463) calculated from the DNA sequence. The optimal pH of the enzyme was 5.5, and the enzyme was stable between pH 5.0 and pH 7.5. The enzyme had a temperature optimum at 40 degrees C. The K(m) values estimated for barley beta-glucan and CMC were 0.32 and 0.50 mg/ml, respectively.  相似文献   

16.
Xylitol dehydrogenase (XDH) was purified from the cytoplasmic fraction of Gluconobacter oxydans ATCC 621. The purified enzyme reduced D-xylulose to xylitol in the presence of NADH with an optimum pH of around 5.0. Based on the determined NH2-terminal amino acid sequence, the gene encoding xdh was cloned, and its identity was confirmed by expression in Escherichia coli. The xdh gene encodes a polypeptide composed of 262 amino acid residues, with an estimated molecular mass of 27.8 kDa. The deduced amino acid sequence suggested that the enzyme belongs to the short-chain dehydrogenase/reductase family. Expression plasmids for the xdh gene were constructed and used to produce recombinant strains of G. oxydans that had up to 11-fold greater XDH activity than the wild-type strain. When used in the production of xylitol from D-arabitol under controlled aeration and pH conditions, the strain harboring the xdh expression plasmids produced 57 g/l xylitol from 225 g/l D-arabitol, whereas the control strain produced 27 g/l xylitol. These results demonstrated that increasing XDH activity in G. oxydans improved xylitol productivity.  相似文献   

17.
The gene encoding alpha-L-arabinofuranosidase (STX-IV), located upstream of the previously reported stxI gene, was cloned and sequenced. The gene is divergently transcribed from the stxI gene, and the two genes are separated by 661 nucleotides. The stxIV gene consists of a 1,092-bp open reading frame encoding 363 amino acids. The deduced amino acid sequence of the gene showed that STX-IV was an enzyme consisting of only a catalytic domain, and that the enzyme had significant similarity with alpha-L-arabinofuranosidases belonging to family 62 of glycosyl hydrolases. The stxIV gene was expressed in Escherichia coli, and the recombinant protein was purified to homogeneity. Arabinoxylan and oat spelt xylan were good substrates for STX-IV, however, the enzyme showed a low activity with p-nitrophenyl alpha-L-arabinofuranoside. The optimum pH and temperature were 5.0 and 60 degrees C, respectively.  相似文献   

18.
A gene encoding a trehalose phosphorylase was cloned from Thermoanaerobacter brockii ATCC 35047. The gene encodes a polypeptide of 774 amino acid residues. The deduced amino acid sequence was homologous to bacterial maltose phosphorylases and a trehalose 6-phosphate phosphorylase catalyzing anomer-inverting reactions. On the other hand, no homology was found between the T. brockii enzyme and an anomer-retaining trehalose phosphorylase from Grifola frondosa.  相似文献   

19.
An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed significantly from the T. saccharolyticum B6A-RI xylose isomerase suggested that one or more of the observed amino acid changes was responsible for this observed difference.  相似文献   

20.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid. We have purified CMP-NeuAc synthetase from an Escherichia coli O18:K1 cytoplasmic fraction to apparent homogeneity by ion exchange chromatography and affinity chromatography on CDP-ethanolamine linked to agarose. The enzyme has a specific activity of 2.1 mumol/mg/min and migrates as a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis. The enzyme has a requirement for Mg2+ or Mn2+ and exhibits optimal activity between pH 9.0 and 10. The apparent Michaelis constants for the CTP and NeuAc are 0.31 and 4 mM, respectively. The CTP analogues 5-mercuri-CTP and CTP-2',3'-dialdehyde are inhibitors. The purified CMP-N-acetylneuraminic acid synthetase has a molecular weight of approximately 50,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding CMP-N-acetylneuraminic acid synthetase is located on a 3.3-kilobase HindIII fragment. The purified enzyme appears to be identical to the 50,000 Mr polypeptide encoded by this gene based on insertion mutations that result in the loss of detectable enzymatic activity. The amino-terminal sequence of the purified protein was used to locate the start codon for the CMP-NeuAc synthetase gene. Both the enzyme and the 50,000 Mr polypeptide have the same NH2-terminal amino acid sequence. Antibodies prepared to a peptide derived from the NH2-terminal amino acid sequence bind to purified CMP-NeuAc synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号