首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prenatal hypoxia (PH) is a common pregnancy complication, harmful to brain development. This study investigated whether and how PH affected Wnt pathway in the brain. Pregnant rats were exposed to hypoxia (10.5% O2) or normoxia (21% O2; Control). Foetal brain weight and body weight were decreased in the PH group, the ratio of brain weight to body weight was increased significantly. Prenatal hypoxia increased mRNA expression of Wnt3a, Wnt7a, Wnt7b and Fzd4, but not Lrp6. Activated β‐catenin protein and Fosl1 expression were also significantly up‐regulated. Increased Hif1a expression was found in the PH group associated with the higher Wnt signalling. Among 5 members of the Sfrp family, Sfrp4 was down‐regulated. In the methylation‐regulating genes, higher mRNA expressions of Dnmt1 and Dnmt3b were found in the PH group. Sodium bisulphite and sequencing revealed hyper‐methylation in the promoter region of Sfrp4 gene in the foetal brain, accounting for its decreased expression and contributing to the activation of the Wnt‐Catenin signalling. The study of PC12 cells treated with 5‐aza further approved that decreased methylation could result in the higher Sfrp4 expression. In the offspring hippocampus, protein levels of Hif1a and mRNA expression of Sfrp4 were unchanged, whereas Wnt signal pathway was inhibited. The data demonstrated that PH activated the Wnt pathway in the foetal brain, related to the hyper‐methylation of Sfrp4 as well as Hif1a signalling. Activated Wnt signalling might play acute protective roles to the foetal brain in response to hypoxia, also would result in disadvantageous influence on the offspring in long‐term.  相似文献   

2.
3.
Secreted frizzled-related proteins (Sfrps) are considered Wnt signalling antagonists but recent studies have shown that specific family members enhance Wnt diffusion and thus positively modulate Wnt signalling. Whether this is a general and physiological property of all Sfrps remains unexplored. It is equally unclear whether disruption of Sfrp expression interferes with developmental events mediated by Wnt signalling activation. Here, we have addressed these questions by investigating the functional consequences of Sfrp disruption in the canonical Wnt signalling-dependent specification of the mouse optic cup periphery. We show that compound genetic inactivation of Sfrp1 and Sfrp2 prevents Wnt/β-catenin signalling activation in this structure, which fails to be specified and acquires neural retina characteristics. Consistent with a positive role of Sfrps in signalling activation, Wnt spreading is impaired in the retina of Sfrp1(-/-);Sfrp2(-/-) mice. Conversely, forced expression of Sfrp1 in the wing imaginal disc of Drosophila, the only species in which the endogenous Wnt distribution can be detected, flattens the Wg gradient, suppresses the expression of high-Wg target genes but expands those typically activated by low Wg concentrations. Collectively, these data demonstrate that, in vivo, the levels of Wnt signalling activation strongly depend on the tissue distribution of Sfrps, which should be viewed as multifunctional regulators of Wnt signalling.  相似文献   

4.
The limb musculature arises by delamination of premyogenic cells from the lateral dermomyotome. Initially the cells express Pax3 but, upon entering the limb bud, they switch on the expression of MyoD and Myf5 and undergo terminal differentiation into slow or fast fibres, which have distinct contractile properties that determine how a muscle will function. In the chick, the premyogenic cells express the Wnt antagonist Sfrp2, which is downregulated as the cells differentiate, suggesting that Wnts might regulate myogenic differentiation. Here, we have investigated the role of Wnt signalling during myogenic differentiation in the developing chick wing bud by gain- and loss-of-function studies in vitro and in vivo. We show that Wnt signalling changes the number of fast and/or slow fibres. For example, in vivo, Wnt11 decreases and increases the number of slow and fast fibres, respectively, whereas overexpression of Wnt5a or a dominant-negative Wnt11 protein have the opposite effect. The latter shows that endogenous Wnt11 signalling determines the number of fast and slow myocytes. The distinct effects of Wnt5a and Wnt11 are consistent with their different expression patterns, which correlate with the ultimate distribution of slow and fast fibres in the wing. Overexpression of activated calmodulin kinase II mimics the effect of Wnt5a, suggesting that it uses this pathway. Finally, we show that overexpression of the Wnt antagonist Sfrp2 and DeltaLef1 reduces the number of myocytes. In Sfrp2-infected limbs, the number of Pax3 expressing cells was increased, suggesting that Sfrp2 blocks myogenic differentiation. Therefore, Wnt signalling modulates both the number of terminally differentiated myogenic cells and the intricate slow/fast patterning of the limb musculature.  相似文献   

5.
6.
Recent studies indicate a role for Wnt signaling in regulating lens cell differentiation (Stump et al., 2003). Here we investigated expression patterns of Wnt receptors, the Frizzleds (Fzs) and the Wnt signaling regulators, the secreted frizzled-related proteins (Sfrps), during rodent lens development. RT-PCR showed that Fz receptors, Fz1-Fz8 are expressed in lens. In situ hybridization showed that all the Fz genes examined have similar expression patterns. Fzs are expressed throughout the early lens primordium. At embryonic day 14.5 (E14.5), Fz gene expression is predominantly localized to the epithelium and elongating cells at the lens equator. Fz expression is absent from lens fibers. This pattern of Fz gene expression continues throughout early postnatal development. Immunolocalization studies showed that Fz protein distribution closely follows that of the mRNAs. In addition, epithelial cells in FGF-treated explants show strongest Fz reactivity in cellular protrusions as they migrate and elongate. Sfrp1- Sfrp5 are expressed and all, except Sfrp2, have similar patterns of expression to each other and to the Fzs during lens development. Sfrp2 is strongly expressed in all lens pit cells but becomes restricted to the presumptive epithelial cells of the lens vesicle. By E14.5, Sfrp2 is only present in a few cells above the lens equator. Sfrp2 is not detected in the lens at E18.5 or at later stages. This study shows that multiple Fz and Sfrp genes are expressed during lens morphogenesis and differentiation. This is consistent with a role for Wnt-Fz signaling during both embryonic and postnatal lens development.  相似文献   

7.
The mouse Wnt family comprises at least 10 members sharing substantial amino acid identity with the secreted glycoprotein Wnt-1/int-1. Two of these, Wnt-1 and Wnt-3, are implicated in mouse mammary tumor virus-associated adenocarcinomas, although neither member is normally expressed in the mammary gland. These results suggest the presence of active cellular pathways which mediate the action of Wnt-1 and Wnt-3 signals. An understanding of the normal role of these signalling pathways is clearly necessary to comprehend the involvement of Wnt-1 and Wnt-3 in mammary tumorigenesis. We demonstrate here that five Wnt family members are expressed and differentially regulated in the normal mouse mammary gland. In addition, some of these genes are also expressed in both Wnt-1-responsive and nonresponsive mammary epithelial cell lines. We propose that Wnt-mediated signalling is involved in normal regulation of mammary development and that inappropriate expression of Wnt-1, Wnt-3, and possibly other family members can interfere with these signalling pathways.  相似文献   

8.
The anterior visceral endoderm (AVE) plays an important role in anterior-posterior axis formation in the mouse. The AVE functions in part by expressing secreted factors that antagonize growth factor signaling in the proximal epiblast. Here we report that the Secreted frizzled-related protein 5 (Sfrp5) gene, which encodes a secreted factor that can antagonize Wnt signaling, is expressed in the AVE and foregut endoderm during early mouse development. At embryonic day (E) 5.5, Sfrp5 is expressed in the visceral endoderm at the distal tip region of the embryo and at E6.5 in the AVE opposite the primitive streak. In Lim1 embryos, which lack anterior neural tissue and sometimes form a secondary body axis, Sfrp5-expressing cells fail to move towards the anterior and remain at the distal tip of E6.5 embryos. When compared with Dkk1, which encodes another secreted Wnt antagonist molecule present in the visceral endoderm, Sfrp5 and Dkk1 expression overlap but Sfrp5 is expressed more broadly in the AVE. Between E7.5 and 8, Sfrp5 is expressed in the foregut endoderm underlying the cardiac mesoderm. At E8.5, Sfrp5 is expressed in the ventral foregut endoderm that gives rise to the liver. Additional domains of Sfrp5 expression occur in the dorsal neural tube and in the forebrain anterior to the optic placode. These findings identify a gene encoding a secreted Wnt antagonist that is expressed in the extraembryonic visceral endoderm and anterior definitive endoderm during axis formation and organogenesis in the mouse.  相似文献   

9.
Wnts are secreted proteins with functions in differentiation, development and cell proliferation. Wnt signaling has also been implicated in neuromuscular junction formation and may function in synaptic plasticity in the adult as well. Secreted frizzled-related proteins (Sfrps) such as Sfrp1 can function as inhibitors of Wnt signaling. In the present study a potential role of Wnt signaling in denervation was examined by comparing the expression levels of Sfrp1 and key proteins in the canonical Wnt pathway, Dishevelled, glycogen synthase kinase 3β and β-catenin, in innervated and denervated rodent skeletal muscle. Sfrp1 mRNA and immunoreactivity were found to be up-regulated in mouse hemidiaphragm muscle following denervation. Immunoreactivity, detected by Western blots, and mRNA, detected by Northern blots, were both expressed in extrasynaptic as well as perisynaptic parts of the denervated muscle. Immunoreactivity on tissue sections was, however, found to be concentrated postsynaptically at neuromuscular junctions. Using β-catenin levels as a readout for canonical Wnt signaling no evidence for decreased canonical Wnt signaling was obtained in denervated muscle. A role for Sfrp1 in denervated muscle, other than interfering with canonical Wnt signaling, is discussed.  相似文献   

10.
Sfrp is a secreted Wnt antagonist that directly interacts with Wnt ligand. We show here that inactivation of Sfrp1, Sfrp2, and Sfrp5 leads to fused somites formation in early-somite mouse embryos, simultaneously resulting in defective convergent extension (CE), which causes severe shortening of the anteroposterior axis. These observations indicate the redundant roles of Sfrp1, Sfrp2, and Sfrp5 in early trunk formation. The roles of the Sfrps were genetically distinguished in terms of the regulation of Wnt pathways. Genetic analysis combining Sfrps mutants and Loop-tail mice revealed the involvement of Sfrps in CE through the regulation of the planar cell polarity pathway. Furthermore, Dkk1-deficient embryos carrying Sfrp1 homozygous and Sfrp2 heterozygous mutations display irregular somites and indistinct intersomitic boundaries, which indicates that Sfrps-mediated inhibition of the Wnt/beta-catenin pathway is necessary for somitogenesis. Our results suggest that Sfrps regulation of the canonical and noncanonical pathways is essential for proper trunk formation.  相似文献   

11.
12.
13.
The secreted frizzled-related proteins (Sfrp) are a family of soluble proteins with diverse biological functions having the capacity to bind Wnt ligands, to modulate Wnt signalling, and to signal directly via the Wnt receptor, Frizzled. In an enhancer trap screen for embryonic expression in zebrafish we identified an sfrp1 gene. Previous studies suggest an important role for sfrp1 in eye development, however, no data have been reported using the zebrafish model. In this paper, we describe duplicate sfrp1 genes in zebrafish and present a detailed analysis of the expression profile of both genes. Whole mount in situ hybridisation analyses of sfrp1a during embryonic and larval development revealed a dynamic expression profile, including: the central nervous system, where sfrp1a was regionally expressed throughout the brain and developing eye; the posterior gut, from the time of endodermal cell condensation; the lateral line, where sfrp1a was expressed in the migrating primordia and interneuromast cells that give rise to the sensory organs. Other sites included the blastoderm, segmenting mesoderm, olfactory placode, developing ear, pronephros and fin-bud. We have also analysed sfrp1b expression during embryonic development. Surprisingly this gene exhibited a divergent expression profile being limited to the yolk syncytium under the elongating tail-bud, which later covered the distal yolk extension, and transiently in the tail-bud mesenchyme. Overall, our studies provide a basis for future analyses of these developmentally important factors using the zebrafish model.  相似文献   

14.
Previous in vitro studies identified secreted frizzled related protein 1 (SFRP1) as a candidate pro-proliferative signal during prostatic development and cancer progression. This study determined the in vivo roles of SFRP1 in the prostate using expression studies in mice and by creating loss- and gain-of-function mouse genetic models. Expression studies using an Sfrp1lacZ knock-in allele showed that Sfrp1 is expressed in the developing mesenchyme/stroma of the prostate. Nevertheless, Sfrp1 null prostates exhibited multiple prostatic developmental defects in the epithelium including reduced branching morphogenesis, delayed proliferation, and increased expression of genes encoding prostate-specific secretory proteins. Interestingly, over-expression of SFRP1 in the adult prostates of transgenic mice yielded opposite effects including prolonged epithelial proliferation and decreased expression of genes encoding secretory proteins. These data demonstrated a previously unrecognized role for Sfrp1 as a stromal-to-epithelial paracrine modulator of epithelial growth, branching morphogenesis, and epithelial gene expression. To clarify the mechanism of SFRP1 action in the prostate, the response of WNT signaling pathways to SFRP1 was examined. Forced expression of SFRP1 in prostatic epithelial cells did not alter canonical WNT/β-catenin signaling or the activation of CamKII. However, forced expression of SFRP1 led to sustained activation of JNK, and inhibition of JNK activity blocked the SFRP1-induced proliferation of prostatic epithelial cells, suggesting that SFRP1 acts through the non-canonical WNT/JNK pathway in the prostate.  相似文献   

15.
16.
The Ihh (Indian Hedgehog) pathway plays an essential role in facilitating chondrocyte hypertrophy and bone formation during skeletal development. Nkx3.2 (NK3 homeobox 2) is initially induced in chondrocyte precursor cells, maintained in early-stage chondrocytes and down-regulated in terminal-stage chondrocytes. Consistent with these expression patterns, Nkx3.2 has been shown to enhance chondrocyte differentiation and cell survival, while inhibiting chondrocyte hypertrophy and apoptosis. Thus, in the present study, we investigated whether Nkx3.2, an early-stage chondrogenic factor, can be regulated by Ihh, a key regulator for chondrocyte hypertrophy. We show that Ihh signalling can induce proteasomal degradation of Nkx3.2. In addition, we found that Ihh can suppress levels of Lrp (low-density-lipoprotein-receptor-related protein) (Wnt co-receptor) and Sfrp (secreted frizzled-related protein) (Wnt antagonist) expression, which, in turn, may selectively enhance Lrp-independent non-canonical Wnt pathways in chondrocytes. In agreement with these findings, Ihh-induced Nkx3.2 degradation requires Wnt5a, which is capable of triggering Nkx3.2 degradation. Finally, we found that Nkx3.2 protein levels in chondrocytes are remarkably elevated in mice defective in Ihh signalling by deletion of either Ihh or smoothened. Thus these results suggest that Ihh/Wnt5a signalling may play a role in negative regulation of Nkx3.2 for appropriate progression of chondrocyte hypertrophy during chondrogenesis.  相似文献   

17.
18.
19.
Wnt signaling is important in organogenesis, and aberrant signaling in mature cells is associated with tumorigenesis. Several members of the Wnt family of signaling molecules are expressed in the developing pituitary gland. Wnt5a is expressed in the neuroectoderm that induces pituitary gland development and has been proposed to influence pituitary cell specification. We discovered that mice deficient in Wnt5a display abnormal morphology in the dorsal part of the developing pituitary. The expression of downstream effectors of the canonical Wnt pathway is not altered, and expression of genes in other signaling pathways such as Shh, Fgf8, Fgf10 and Fgfr2b is intact. Prop1 and Hesx1 are also important for normal shape of the pituitary primordium, but their expression is unaltered in the Wnt5a mutants. Specification of the hormone-producing cell types of the mature anterior pituitary gland occurs appropriately. This study suggests that the primary role of Wnt5a in the developing pituitary gland is in establishment of the shape of the gland.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号