首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visual targets were presented monocularly to the leading and nonleading eyes. The complex of rapid positive and negative potentials was studied using the reverse summation from the onset of saccades. The latencies of saccades and peak latencies of the averaged presaccadic potentials were measured. The dependence of the saccade latencies and peak latencies of the complex of potentials on stimulation of the leading or nonleading eye and saccade direction was not simple and was largely determined by the individual profile of asymmetry. It is suggested that during stimulation of the leading eye the processes of attention fixation and switching as well as of the space visual processing are faster than during stimulation of the nonleading eye. Thus, the leading role of the right eye is reflected not only in fixation processes but also in movement anticipation.  相似文献   

2.
3.
Cerebral lateralization, an evolutionarily ancient and widespread phenomenon among vertebrates, is thought to bestow cognitive advantages. The advantages of lateralization at the individual-level do not necessarily require that the entire population share the same pattern of lateralization. In fact, directional bias in lateralization may lead to behavioural predictability and enhanced predator success or prey evasion. Recent theory has suggested that population-level lateralization may be favored if individuals are better able to perform coordinated behaviours, providing a distinct advantage in cooperative contexts. Here we test whether the highly social, cooperatively breeding cichlid fish Neolamprologus pulcher shows lateralized responses to a social stimulus. We found population-level biases in males; on average male N. pulcher use their right eye/left hemisphere to view their mirror image. Individual females had a preferred hemisphere, but these preferences appeared not to be directionally aligned among females. We discuss these results in the context of coordinated social behaviour and suggest future research directions.  相似文献   

4.
5.
When we look at a stationary object, the perceived direction of gaze (where we are looking) is aligned with the physical direction of eyes (where our eyes are oriented) by which the object is foveated. However, this alignment may not hold in a dynamic situation. Our experiments assessed the perceived locations of two brief stimuli (1 ms) simultaneously displayed at two different physical locations during a saccade. The first stimulus was in the instantaneous location to which the eyes were oriented and the second one was always in the same location as the initial fixation point. When the timing of these stimuli was changed intra-saccadically, their perceived locations were dissociated. The first stimuli were consistently perceived near the target that will be foveated at saccade termination. The second stimuli once perceived near the target location, shifted in the direction opposite to that of saccades, as its latency from saccades increased. These results suggested an independent adjustment of gaze orientation from the physical orientation of eyes during saccades. The spatial dissociation of two stimuli may reflect sensorimotor control of gaze during saccades.  相似文献   

6.
A simple instance of parallel computation in neural networks occurs when the eye orients to a novel visual target. Consideration of target-elicited saccadic eye movements opens the question of how spatial position is represented in the visual pathways involved in this response. It is argued that a point-for-point retinotopic coding of spatial position (the 'local sign' approach) is inadequate to account for the characteristics of the response. An alternative approach based on distributed coding is developed.  相似文献   

7.
8.
The latent periods of saccadic eye movements in response to peripheral visual stimuli were measured in 8 right-handed healthy subjects using Posner's paradigm "COST-BENEFIT". In 6 subjects, the saccade latency in response to visual target presented in expected location in valid condition was shorter than that in neutral condition ("benefit"). Increase in saccade latency in response to the visual target presented in unexpected location in valid condition versus neutral condition took place only in 4 subjects ("cost"). A decrease in left-directed saccade latency in response to expected target presented in the left hemifield and increase in saccade latency in response to unexpected left target in comparison with analogous right-directed saccades were observed in valid condition. This phenomenon can be explained by the dominance of the right hemisphere in the processes of spatial orientation and "disengage" of attention.  相似文献   

9.
Using a piecewise linear approach, individual saccadic eye movements have been Fourier decomposed in an attempt to determine the effect of saccadic amplitude on frequency characteristics. These characteristics were plotted in the traditional Bode plot form, showing gain and phase as a function of frequency for various eye movement amplitudes. Up to about one octave beyond the -3 db gain frequency, the limiting system dynamics represented by the saccadic trajectory of a given amplitude may be considered linear and second order. The -3 db gain frequency was used as a measure of bandwidth, and the -90 degrees phase crossover frequency was used as a measure of undamped natural frequency. These two quantities were used to calculate the damping factor. Both bandwidth and undamped natural frequency decrease with increasing saccadic eye movement amplitude. The damping factor shows no trend with amplitude and indicates approximate critical damping. When compared with the normal variation of characteristics for a given movement, the frequency characteristics of fixed-amplitude saccades showed no generalized trends with changes in direction or DC operating level of movement.  相似文献   

10.
11.
Latency of visually evoked saccadic eye movements   总被引:1,自引:0,他引:1  
The validness of a model describing the relation between mean saccadic latency and stimulus asynchrony based on facilitation instead of suppression was tested experimentally. As a result, suppression of signals generated by the onset of a peripheral stimulus due to fixation of another target, giving rise to an increase of mean saccadic latency, does not seem very likely. The influence of the intensity of the fixation target on the latency of visually evoked saccades was studied. According to the facilitation model, the offset of the fixation target induces after an afferent delay, a transition of the state of the facilitation mechanism from the unfacilitated condition into a mode of maximal facilitation. The time-period during which this change is accomplished is called Facilitation-Rise-Time (FRT). An interpretation within the context of the facilitation model of gap-overlap latency data for different values of the intensity of the fixation stimulus suggests, in combination with computer-computations of the model, that lowering of this intensity causes an increase in FRT. The results in normal subjects of step stimulus experiments with a dim fixation point substantiate the hypothesis of a facilitation mechanism, which is triggerable not only by an external signal such as the offset of the fixation point, but also by some internal stimulus independent signal. Moreover, data for tracking by an amblyopic eye seem to support this conclusion. The findings of increased saccadic latencies in amblyopic and Optic Neuritis (ON) eyes suggest a slowing of processing of visual information in the sensory pathways from the central retina, subsequently utilized by the oculomotor system in the generation of saccades.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Binocular rivalry is a fascinating perceptual phenomenon that has been characterized extensively at the psychophysical level. However, the underlying neural mechanism remains poorly understood. In particular, the role of the early visual pathway remains controversial. In this study, we used voltage-sensitive dye imaging to measure the spatiotemporal activity patterns in cat area 18 evoked by dichoptic orthogonal grating stimuli. We found that after several seconds of monocular stimulation with an oriented grating, an orthogonal stimulus to the other eye evoked a reversal of the cortical response pattern, which may contribute to flash suppression in perception. Furthermore, after several seconds of rival binocular stimulation with unequal contrasts, transient increase in the contrast of the weak stimulus evoked a long-lasting cortical response. This transient-triggered response could contribute to the perceptual switch during binocular rivalry. Together, these results point to a significant contribution of early visual cortex to transient-triggered switch in perceptual dominance.  相似文献   

13.
A syntactic technique is described for the recognition of saccadic eye movements to distinguish normal saccades from those distorted by brain stem lesions. A digitalized eye movement signal is transformed into a sequence of symbols. Eye movements are then found from this sequence by using a parser. This recognition method appropriately enlarged could be applied as a classifier of saccades to aid in diagnosis  相似文献   

14.
15.
An olfactometer is described that presents temporally-discretepulses of stimuli to individual chemosensory structures. Thedevice is based on standard pressure injection techniques inwhich pulses of compressed air eject nanoliter volumes of upto six stimulants from small diameter glass micropipettes. Thedevice should be readily adaptable to different chemoreceptorpreparations.  相似文献   

16.
Extracellular recordings were carried out in the visual cortex of behaving monkeys trained on a fixation/detection task, during which a target light was displayed stationary or suddenly moving on a tangent translucent screen. The responses of visual cortical cells to fast moving stimuli during steady fixation and those obtained during rapid eye movements (saccades) which moved their receptive field across a stationary stimulus, were studied. Areas V1 and V2 were explored. When tested with rapidly moving stimuli (500 deg/sec) during steady fixation, neurons in each area behaved in almost the same way. About one fourth of them were activated, the remainder showing either no response (little more than a half of them) or a reduction of the spontaneous firing rate. In both areas, some of the neurons activated during steady fixation did not respond or responded very weakly during eye motion at saccadic velocity (500 +/- 50 deg/sec). Neurons of this type, which we refer to as 'real motion' cells, could somehow contribute to the maintenance of visual stability during the execution of large eye movements.  相似文献   

17.
The activity of antidromically identified abducens nucleus motoneurons and inter-nuclear neurons has been recorded during saccadic eye movements in the alert cat. The activity of these neurons has been demonstrated to be the sum of a velocity component proportional to eye velocity plus a position component proportional to instantaneous eye position during the movement. Results are discussed in relation to proposed models about the generation of saccadic eye movements.  相似文献   

18.
 A biophysically realistical model of the primary visual pathway is designed, including feedback connections from the visual cortex to the lateral geniculate nucleus (LGN) – the so-called corticofugal pathway. The model comprises up to 10 000 retina and LGN cells divided into the ON and the OFF pathway according to their contrast response characteristics. An additional 6000 cortical simple cells are modeled. Apart from the direct excitatory afferent pathway we include strong mutual inhibition between the ON and the OFF subsystems. In addition, we propose a novel type of paradoxical corticofugal connection pattern which links ON dominated cortical simple cells to OFF-center LGN cells and vice versa. In accordance with physiological findings these connections are weakly excitatory and do not interfere with the steady-state responses to constant illumination, because during the steady-state inhibition arising from the active pathway effectively silences the nonstimulated pathway. At the moment of a contrast reversal the effect of the paradoxical connection pattern comes into play and the depolarization of the previously silent channel is accelerated, leading to a latency reduction of up to 4 ms using moderate synaptic weights. With increased weights reductions of more than 10 ms can be achieved. We introduce different synaptic characteristics for the feedback (AMPA, NMDA, AMPA+NMDA) and show that the strongest latency reduction is obtained for a combination of the membrane channels (i.e., AMPA+NMDA). The effect of the proposed paradoxical connection pattern is self-regulating; because the levels of inhibition and paradoxical excitation are always driven by the same inputs (strong inhibition is counterbalanced by a stronger paradoxical excitation and vice versa). In addition, the latency reduction for a contrast inversion which ends at a small absolute contrast level (small contrast step) is stronger than the reduction for an inversion with large final contrast (large contrast step). This leads to a more pronounced reduction in the reaction times for weak stimuli. Thus, reaction time differences for different contrast steps are smoothed out. Received: 22 January 1996/Accepted in revised form: 20 May 1996  相似文献   

19.
Melcher D 《Current biology : CB》2005,15(19):1745-1748
Although conscious perception is smooth and continuous, the input to the visual system is a series of short, discrete fixations interleaved with rapid shifts of the eye. One possible explanation for visual stability is that internal maps of objects and their visual properties are remapped around the time of saccades, but numerous studies have demonstrated that visual patterns are not combined across saccades. Here, we report that visual-form aftereffects transfer across separate fixations when adaptor and test are presented in the same spatial position. The magnitude of the transsaccadic adaptation increased with stimulus complexity, suggesting a progressive construction of spatiotopic receptive fields along the visual-form pathway. These results demonstrate that basic shape information is combined across saccades, allowing for predictive and consistent information from the past to be incorporated into each new fixation.  相似文献   

20.
The human horizontal eye movement system produces quick, precise, conjugate eye movements called saccades. These are important in normal vision. For example, reading tasks exclusively utilize saccadic eye movements. The majority of saccades have dynamic overshoot. The amplitude of this overshoot is independent of saccadic amplitude, and is such that it places the image of the stimulus within the retinal region of maximum acuity within a minimum of time. A computer based model of the saccadic mechanisms was used to study the origin of this overshoot. It was discussed that dynamic overshoot cannot be attributed to biomechanism properites of the eye movement mechanism, but must instead be explained by variations in the controlling nervous activity. The form of this neural controller signal is very similar to that required for a time optimal response of an inertial system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号