首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interactions between dopamine (DA) and glutamate systems in the prefrontal cortex (PFC) are important in addiction and other psychiatric disorders. Here, we examined DA receptor regulation of NMDA receptor surface expression in postnatal rat PFC neuronal cultures. Immunocytochemical analysis demonstrated that surface expression (synaptic and non-synaptic) of NR1 and NR2B on PFC pyramidal neurons was increased by the D1 receptor agonist SKF 81297 (1 microM, 5 min). Activation of protein kinase A (PKA) did not alter NR1 distribution, indicating that PKA does not mediate the effect of D1 receptor stimulation. However, the tyrosine kinase inhibitor genistein (50 microM, 30 min) completely blocked the effect of SKF 81297 on NR1 and NR2B surface expression. Protein cross-linking studies confirmed that SKF 81297 (1 microM, 5 min) increased NR1 and NR2B surface expression, and further showed that NR2A surface expression was not affected. Genistein blocked the effect of SKF 81297 on NR1 and NR2B. Surface-expressed immunoreactivity detected with a phospho-specific antibody to tyrosine 1472 of NR2B also increased after D1 agonist treatment. Our results show that tyrosine phosphorylation plays an important role in the trafficking of NR2B-containing NMDA receptors in PFC neurons and the regulation of their trafficking by DA receptors.  相似文献   

2.
Coexpression in human embryonic kidney (HEK) 293 cells of the postsynaptic density-95 protein (PSD-95) with NMDA receptor NR2A or NR2B single subunits or NR1-1a/NR2A and NR1-1a/NR2B subunit combinations induced an approximately threefold increase in NR2A and NR2B subunit expression. Deletion of the NR2 C-terminal ESDV motifs resulted in the loss of this increase following coexpression of NR1-1a/NR2A(Trunc) and NR1-1a/NR2B(Trunc) with PSD-95. Characterisation of the radioligand binding properties of [(3)H]MK-801 to NR1-1a/NR2A receptors with or without PSD-95 showed that PSD-95 induced a threefold increase in B:(max) values and an apparent approximately fivefold decrease in affinity in the presence of 10 microM: L-glutamate. In the presence of 1 mM: L-glutamate, the K:(i) for MK-801 binding to NR1-1a/NR2A with PSD-95 was not significantly different from that for NR1-1a/NR2A without PSD-95. The EC(50) value for the enhancement of [(3)H]MK-801 binding by L-glutamate to NR1-1a/NR2A was 1.8 +/- 0.4 (n = 4) and 8.9 (mean of n = 2) microM: in the absence and presence of PSD-95, respectively. Thus, coexpression of PSD-95 with NR1-1a/NR2A results in a decreased sensitivity to L-glutamate and an enhanced expression of NR2A and NR2B subunits. Deletion studies show that this effect is mediated via interaction of the C-terminal ESDV motif of the NR2 subunit with PSD-95.  相似文献   

3.
Severe cellular damage and neuronal cell loss were previously observed in cultures of primary cortical neurones after chronic ethanol pre-treatment followed by ethanol-withdrawal. In this study, we investigated the circumstances and the possible cellular changes leading to alcohol-withdrawal induced neuronal cell death. When cultures were pre-treated with ethanol (25-200mM) once for 24 or 72h, the amount of the subsequent 24h alcohol-withdrawal induced cell death-estimated by measuring the release of lactate dehydrogenase (LDH)-was elevated only in cultures pre-treated with 200mM ethanol for 72h. On the contrary, as little as 50mM ethanol produced significant (P<0.01) increase in the withdrawal induced LDH-release in cultures pre-treated repeatedly with ethanol once daily for three consecutive days. When ethanol was re-added to the cultures during the withdrawal period, the LDH-release was dose-dependently reduced to the level of control. In ethanol pre-treated cultures N-methyl-D-aspartate (NMDA) (0.01-1mM) induced excitotoxicity as well as NMDA evoked elevation of cytosolic calcium ion concentration was increased. In contrast, the depolarising agent veratridine (0.01-1mM) produced similar extent of neuronal injury and elevation in cytosolic calcium ion concentration in control as in ethanol pre-treated cultures. According to these observations, repeated ethanol treatment appears to cause more robust adaptive changes in cultured neurones leading to more pronounced withdrawal induced cellular damage than chronic but single treatment does. In addition, the glutamatergic neurotransmission, especially the NMDA receptor system seems to be highly involved in the adaptive changes and in the cytotoxic effect of alcohol-withdrawal.  相似文献   

4.
Amyotrophic Lateral Sclerosis (ALS) is a chronic neurodegenerative disease affecting upper and lower motor neurons, with unknown aetiology. Lipid rafts, cholesterol enriched microdomains of the plasma membrane, have been linked to neurodegenerative disorders like ALS. The NMDA-receptor subcellular localization in lipid rafts is known to play many roles, from modulating memory strength to neurotoxicity. In this study, performed on the widely used G93A mouse model of ALS, we have shown an equal content of total membrane cholesterol in Control and G93A cortical cultures. Moreover, by electrophysiological studies, we have recorded NMDA- and AMPA-evoked currents which were not significantly different between the two neuronal populations. To study the role of membrane cholesterol on glutamate receptor functionality, we have analysed NMDA and AMPA receptors following cholesterol membrane depletion by methyl-β-cyclodextrin (MβCD). Interestingly, MβCD chronic treatment has provoked a significant reduction of NMDA-evoked currents in both cellular populations which was dose- and time-dependent but significantly higher in ALS neurons compared to Control. The different MβCD effect on NMDA-evoked currents was not due to a different membrane receptor subunit composition but seemed to cause in both neuronal populations a NMDA receptor membrane redistribution. MβCD treatment effect was receptor-specific since no alterations in the two neuronal populations were detected on AMPA receptors.These results lead us to speculate for an altered proteomic composition of lipid rafts in cortical mutated neurons and suggest the need for further studies on the lipid rafts composition and on their interaction with membrane receptors in ALS cortices.  相似文献   

5.
The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca2+ accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.  相似文献   

6.
The biophysical properties of NMDA receptors are thought to be critical determinants involved in the regulation of long-term synaptic plasticity during neocortical development. NMDA receptor channel properties are strongly dependent on the subunit composition of heteromeric NMDA receptors. During neocortical development in vivo, the expression of the NMDA receptor 2A (NR2A) subunit is up-regulated at the mRNA and protein level correlating with changes in the kinetic and pharmacological properties of functional NMDA receptors. To investigate the developmental regulation of NMDA receptor subunit expression, we studied NR2 mRNA expression in cultured neocortical neurons. With increasing time in culture, they showed a similar up-regulation of NR2A mRNA expression as described in vivo. As demonstrated by chronic blockade of postsynaptic glutamate receptors in vitro, the regulation of NR2A mRNA was strongly dependent on synaptic activity. In contrast, NR2B mRNA expression was not influenced by activity blockade. Moreover, as shown pharmacologically, the regulation of NR2A mRNA expression was mediated by postsynaptic Ca(2+) influx through both NMDA receptors and L-type Ca(2+) channels. It is interesting that even relatively weak expression of NR2A mRNA was correlated with clearly reduced sensitivity of NMDA receptor-mediated whole-cell currents against the NR2B subunit-specific antagonist ifenprodil. Developmental changes in the expression of NR1 mRNA splice variants were also strongly dependent on synaptic activity and thus might, in addition to regulation of NR2 subunit expression, contribute to developmental changes in the properties of functional NMDA receptors. In summary, our results demonstrate that synaptic activity is a key factor in the regulation of NMDA receptor subunit expression during neocortical development.  相似文献   

7.
RNase L inhibitors (RLIs) correspond to a group of soluble proteins from the large ATP binding cassette (ABC) family of proteins. Structurally, RLIs have an N-terminal Fe–S domain and two nucleotide binding domains. Orthologous RLI sequences with more than 48% identity have been found from Archea to Eukaryota, but have not as yet been identified in Eubacteria. Some organisms, like Arabidopsis thaliana and human, have paralogous genes with differential expression patterns, the function of which remains to be determined. Expression of Arabidopsis RLI2 was slightly increased in transgenic plants showing RNA interference, suggesting a role in this pathway  相似文献   

8.
Schizophrenia is a devastating mental illness that afflicts nearly 1% of the world’s population. Currently available antipsychotics treat positive symptoms, but are largely ineffective at addressing negative symptoms and cognitive dysfunction. Thus, improved pharmacotherapies that treat all aspects of the disease remain a critical unmet need. There is mounting evidence that links NMDA receptor hypofunction and the expression of schizophrenia, and numerous drug discovery programs have developed agents that directly or indirectly potentiate NMDA receptor-mediated neurotransmission. Several compounds have emerged that show promise for treating all symptom sub-domains in both preclinical models and clinical studies, and we will review recent developments in many of these areas.  相似文献   

9.
One approach to studying the functional role of individual NMDA receptor subunits involves the reduction in the abundance of the protein subunit in neurons. We have pursued a strategy to achieve this goal that involves the use of a small guide RNA which can lead to the destruction of the mRNA for a specific receptor subunit. We designed a small RNA molecule, termed 'external guide sequence' (EGS), which binds to the NR1 mRNA and directs the endonuclease RNase P to cleave the target message. This EGS has exquisite specificity and directed the RNase P-dependent cleavage at the targeted location within the NR1 mRNA. To improve the efficiency of this EGS, an in vitro evolution strategy was employed which led to a second generation EGS that was 10 times more potent than the parent molecule. We constructed an expression cassette by flanking the EGS with self-cleaving ribozymes and this permitted generation of the specified EGS RNA sequence from any promoter. Using a recombinant Herpes simplex virus (HSV), we expressed the EGS in neurons and showed the potency of the EGS to reduce NR1 protein within neurons. In an excitotoxicity assay, we showed that expression of the EGS in cortical neurons is neuroprotective. Our results demonstrate the utility of EGSs to reduce the expression of any gene (and potentially any splice variant) in neurons.  相似文献   

10.
《Free radical research》2013,47(5):422-431
Abstract

Homocysteine (Hcy) at elevated levels is a putative risk factor for many cardiovascular disorders including atherosclerosis. In the present study, we investigated the effect of Hcy on the expression of cyclooxygenase (COX)-2 in murine macrophages and the mechanisms involved. Hcy increased the expression of COX-2 mRNA and protein in dose- and time-dependent manners, but did not affect COX-1 expression. Hcy-induced COX-2 expression was attenuated not only by the calcium chelators, EGTA and BAPTA-AM, but also by an antioxidant, N-acetylcysteine. Calcium chelators also attenuated Hcy-induced reactive oxygen species (ROS) production in macrophages, indicating that Hcy-induced COX-2 expression might be mediated through ROS generated by calcium-dependent signaling pathways. In another series of experiments, Hcy increased the intracellular concentration of calcium in a dose-dependent manner, which was attenuated by MK-801, an N-methyl-D-aspartate (NMDA) receptor inhibitor, but not by bicuculline, a gamma-aminobutyric acid receptor inhibitor. Molecular inhibition of NMDA receptor using small interfering RNA also attenuated Hcy-induced increases in intracellular calcium. Furthermore, both ROS production and Hcy-induced COX-2 expression were also inhibited by MK-801 as well as by molecular inhibition of NMDA receptor. Taken together, these findings suggest that Hcy enhances COX-2 expression in murine macrophages by ROS generated via NMDA receptor-mediated calcium signaling pathways.  相似文献   

11.
In order to further analyze the development of glutamatergic pathways in neuronal cells, the expression of excitatory amino acid receptors was studied in a model of neurons in primary culture by measuring the specific binding of L-[3H]glutamate under various incubation conditions in 8-day-old intact living neurons isolated from the embryonic rat forebrain, as well as in membrane preparations from these cultures and from newborn rat forebrain. In addition, the receptor responsiveness to glutamate was assessed by studying the uptake of tetraphenylphosphonium (TPP+) which reflects membrane polarization. In the presence of a potent inhibitor of glutamate uptake, the radioligand bound to a total number of sites of 36.7 pmol/mg protein in intact cells incubated in a Tris buffer containing Na+, Ca2+, and Cl, with a Kd around 2 M. In the absence of the above ions, [3H]glutamate specific binding diminished to 14.2 pmol/mg protein with a Kd-value of 550 nM. Under both of the above conditions, similar Kd were obtained in membranes isolated from cultures and from the newborn brain. However, Bmax-values were significantly lower in culture membranes than in intact cells or newborn membranes. Displacement studies showed that NMDA was the most potent compound to inhibit [3H]glutamate binding in membranes obtained from cultured neurons as well as from the newborn brain, whereas quisqualate, AMPA, kainate andtrans-ACPD were equally effective. According to these data and to the ionic dependence of glutamate binding, it was concluded that cultured neurons from the rat embryo forebrain express various glutamate receptor subtypes, mainly L-AP4 and NMDA receptors, with characteristics close to those in the newborn brain, and which display functional properties since a transient cell exposure to glutamate led to a 70% inhibition of [3H]TPP+ uptake.  相似文献   

12.
13.
Overactivation of NMDA receptors is linked to cell death during neuronal insults. However the precise role of synaptic and extrasynaptic NMDA receptors remains to be further determined. In this study, we used the acute brain slice to examine the contributions of synaptic and extrasynaptic NMDA receptors to neuronal death. By activation of synaptic NMDA receptors with bath application of 100 μM bicuculline in acute brain slices, we observed a significant up-regulation in activation of neuronal survival-related signaling (p-CREB, p-ERK1/2 and p-AKT), without an obvious increase of LDH release and neuronal death. Interestingly, activation of extrasynaptic NMDA receptors alone by high dose of glutamate (200 μM) following blockade of synaptic NMDA receptors with co-application of 20 μM MK801 and 100 μM bicuculline, we failed to observe inhibition of neuronal survival signaling and neuronal damage. In contrast, co-activation of synaptic and extrasynaptic NMDA receptors by applying 200 μM glutamate or oxygen–glucose deprivation (OGD) to acute brain slices for 30 min, we observed a significant inhibition of CREB, ERK1/2 and AKT activation, an increase of LDH release and neuronal condensation. Together, co-activation of synaptic and extrasynaptic NMDA receptors by neuronal insults contributes to cell death in acute brain slice.  相似文献   

14.
Recent studies suggested contribution of homocysteine (HCY) to neurodegenerative disorders and migraine. However, HCY effect in the nociceptive system is essentially unknown. To explore the mechanism of HCY action, we studied short‐ and long‐term effects of this amino acid on rat peripheral and central neurons. HCY induced intracellular Ca2+ transients in cultured trigeminal neurons and satellite glial cells (SGC), which were blocked by the NMDA antagonist AP‐5 in neurons, but not in SGCs. In contrast, 3‐((2‐Methyl‐4‐thiazolyl)ethynyl)pyridine (MTEP), the metabotropic mGluR5 (metabotropic glutamate receptor 5 subtype) antagonist, preferentially inhibited Ca2+ transients in SGCs. Prolonged application of HCY induced apoptotic cell death of both kinds of trigeminal cells. The apoptosis was blocked by AP‐5 or by the mGluR5 antagonist MTEP. Likewise, in cortical neurons, HCY‐induced cell death was inhibited by AP‐5 or MTEP. Imaging with 2′,7′‐dichlorodihydrofluorescein diacetate or mitochondrial dye Rhodamine‐123 as well as thiobarbituric acid reactive substances assay did not reveal involvement of oxidative stress in the action of HCY. Thus, elevation of intracellular Ca2+ by HCY in neurons is mediated by NMDA and mGluR5 receptors while SGC are activated through the mGluR5 subtype. Long‐term neurotoxic effects in peripheral and central neurons involved both receptor types. Our data suggest glutamatergic mechanisms of HCY‐induced sensitization and apoptosis of trigeminal nociceptors.

  相似文献   


15.
In order to examine the effect of modifications at the 3' overhang regions of short interfering RNAs (siRNAs) on their gene-silencing activities, we designed and synthesized novel siRNAs having thymidine dimers consisting of a carbamate or a urea linkage at their 3' overhang regions. Suppression of human RNase L protein expression by these siRNAs was analyzed by immunoblot with RNase L-specific antibody. It was found that, at 24 h post-transfection, the modified siRNAs having the thymidine dimers with the carbamate and urea linkage suppress the protein expression 78 and 37 times more efficiently than that with the natural phosphodiester linkage, respectively. Furthermore, the siRNA containing the carbamate linkage was 37 times more resistant to nucleolytic degradation by snake venom phosphodiesterase than the siRNA consisting of the natural phosphodiester linkage. Thus, the RNA duplexes having the thymidine dimers with the carbamate or urea linkage at their 3' overhang regions will be promising candidates for novel siRNA molecules to down-regulate protein expression.  相似文献   

16.
17.
In the mammalian brain, new neurons are continuously generated throughout life in the dentate gyrus (DG) of the hippocampus. Previous studies have established that newborn neurons migrate a short distance to be integrated into a pre-existing neuronal circuit in the hippocampus. How the migration of newborn neurons is governed by extracellular signals, however, has not been fully understood. Here, we report that NMDA receptor (NMDA-R)-mediated signaling is essential for the proper migration and positioning of newborn neurons in the DG. An intraperitoneal injection of the NMDA-R antagonists, memantine, or 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) into adult male mice caused the aberrant positioning of newborn neurons, resulting in the overextension of their migration in the DG. Interestingly, we revealed that the administration of NMDA-R antagonists leads to a decrease in the expression of Disrupted-In-Schizophrenia 1 (DISC1), a candidate susceptibility gene for major psychiatric disorders such as schizophrenia, which is also known as a critical regulator of neuronal migration in the DG. Furthermore, the overextended migration of newborn neurons induced by the NMDA-R antagonists was significantly rescued by exogenous expression of DISC1. Collectively, these results suggest that the NMDA-R signaling pathway governs the migration of newborn neurons via the regulation of DISC1 expression in the DG.  相似文献   

18.
Summary Whole-cell patch clamp experiments were carried out in rat striatal brain slices. In a subset of striatal neurons (70–80%), NMDA-induced inward currents were inhibited by the adenosine AZA receptor selective agonist CGS 21680. The non-selective adenosine receptor antagonist 8-(p-sulphophenyl)-theophylline and the AZA receptor selective antagonist 8-(3chlorostyryl) caffeine abolished the inhibitory action of CGS 21680. Intracellular GDP--S, which is known to prevent G protein-mediated reactions, also eliminated the effect of CGS 21680. Extracellular dibutyryl cAMP, a membrane permeable analogue of cAMP, and intracellular Sp-cAMPS, an activator of cAMP-dependent protein kinases (PKA), both abolished the CGS 21680-induced inhibition. By contrast, Rp-cAMPS and PKI 14–24 amide, two inhibitors of PKA had no effect. Intracellular U-73122 (a phospholipase C inhibitor) and heparin (an inositoltriphosphate antagonist) prevented the effect of CGS 21680. Finally, a more efficient buffering of intracellular Ca2+ by a substitution of EGTA (11 mM) by BAPTA (5.5 mM) acted like U-73122 or heparin. Hence, AZA receptors appear to negatively modulate NMDA receptor channel conductance via the phospholipase C/inositoltriphosphate/Ca2+ pathway rather than the adenylate cyclase/PKA pathway.  相似文献   

19.
The accumulation of glutamate can excessively activate the N-methyl-d-aspartate (NMDA) receptors and cause excitotoxicity. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside, Vit) is a c-glycosylated flavone which was found in the several herbs, exhibiting potent hypotensive, anti-inflammatory, and neuroprotective properties. However, little is known about the neuroprotective effects of Vit on glutamate-induced excitotoxicity. In present study, primary cultured cortical neurons were treated with NMDA to induce the excitotoxicity. Pretreatment with Vit significantly prevented NMDA-induced neuronal cell loss and reduced the number of apoptotic neurons. Vit significantly inhibited the neuronal apoptosis induced by NMDA exposure by regulating balance of Bcl-2 and Bax expression and the cleavages of poly (ADP-ribose) polymerase and pro-caspase 3. Furthermore, pretreatment of Vit reversed the up-regulation of NR2B-containing NMDA receptors and the intracellular Ca2+ overload induced by NMDA exposure. The neuroprotective effects of Vit are related to inhibiting the activities of NR2B-containing NMDA receptors and reducing the calcium influx in cultured cortical neurons.  相似文献   

20.
RNase L and RNA-dependent protein kinase (PKR) are effectors of the interferon antiviral response that share homology in their pseudokinase and protein kinase domains, respectively. Sunitinib is an orally available, ATP-competitive inhibitor of VEGF and PDGF receptors used clinically to suppress angiogenesis and tumor growth. Sunitinib also impacts IRE1, an endoplasmic reticulum protein involved in the unfolded protein response that is closely related to RNase L. Here, we report that sunitinib is a potent inhibitor of both RNase L and PKR with IC(50) values of 1.4 and 0.3 μM, respectively. In addition, flavonol activators of IRE1 inhibited RNase L. Sunitinib treatment of wild type (WT) mouse embryonic fibroblasts resulted in about a 12-fold increase in encephalomyocarditis virus titers. However, sunitinib had no effect on encephalomyocarditis virus growth in cells lacking both PKR and RNase L. Furthermore, oral delivery of sunitinib in WT mice resulted in 10-fold higher viral titers in heart tissues while suppressing by about 2-fold the IFN-β levels. In contrast, sunitinib had no effect on viral titers in mice deficient in both RNase L and PKR. Also, sunitinib reduced mean survival times from 12 to 6 days in virus-infected WT mice while having no effect on survival of mice lacking both RNase L and PKR. Results indicate that sunitinib treatments prevent antiviral innate immune responses mediated by RNase L and PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号