首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The focus of this study is to investigate the regulatory role of K(+) influx in Arabidopsis pollen germination and pollen tube growth. Using agar-containing media, in vitro methods for Arabidopsis pollen germination have been successfully established for the first time. The pollen germination percentage was nearly 75% and the average pollen tube length reached 135 microm after a 6 h incubation. A decrease in external K(+) concentration from 1 mM to 35 microM resulted in 30% inhibition of pollen germination and 40% inhibition of pollen tube growth. An increase in external K(+) concentration from 1 mM to 30 mM stimulated pollen tube growth but inhibited pollen germination. To study how K(+) influx is associated with pollen germination and tube growth, regulation of the inward K(+) channels in the pollen plasma membrane was investigated by conducting patch-clamp whole-cell recording with pollen protoplasts. K(+) currents were first identified in Arabidopsis pollen protoplasts. The inward K(+) currents were insensitive to changes in cytoplasmic Ca(2+) but were inhibited by a high concentration of external Ca(2+). A decrease of external Ca(2+) concentration from 10 mM (control) to 1 mM had no significant effect on the inward K(+) currents, while an increase of external Ca(2+) concentration from 10 mM to 50 mM inhibited the inward K(+) currents by 46%. Changes in external pH significantly affected the magnitude, conductance, voltage-independent maximal conductance, and activation kinetics of the inward K(+) currents. The physiological importance of potassium influx mediated by the inward K(+)-channels during Arabidopsis pollen germination and tube growth is discussed.  相似文献   

2.
Rat cerebral cortex synaptosomes were exposed in superfusion to various depolarizing stimuli and the release of somatostatin-like immunoreactivity (SRIF-LI) was measured by means of a radioimmunoassay procedure. High KCl (9-50 mM) concentration dependently evoked SRIF-LI release; the evoked overflow reached a plateau at 25 mM KCl and was completely abolished when Ca2+ ions were omitted from the superfusion medium, independently of the concentration of KCl used. The 15 mM K(+)-evoked release of SRIF-LI increased sharply as the Ca2+ concentration was raised to 0.8 mM, then leveled off and reached a plateau at 1.2 mM. The 15 mM K(+)-evoked overflow, but not the spontaneous outflow, was partially decreased (50%) by 1 microM tetrodotoxin. The presence in the superfusion fluid of a mixture of peptidase inhibitors did not improve the recovery of SRIF-LI both in the absence and in the presence of high K+. Exposure of synaptosomes to veratrine (1-50 microM) induced release of SRIF-LI in a concentration-dependent way. The effect of the alkaloid was strictly Ca2+ and tetrodotoxin sensitive. Replacement of extracellular Na+ by sucrose caused an acceleration of the spontaneous SRIF-LI outflow that was inversely correlated to the Na+ content in the superfusion medium. The release evoked by the sodium-deprived media did not exhibit any calcium dependence. HPLC analysis of the samples collected during superfusion showed that greater than 90% of the SRIF-LI released either during the spontaneous outflow or by 15 mM KCl was represented by SRIF-14 (SRIF-28(14-28]. These values reflected the ratio SRIF-14/SRIF-28 found in synaptosomes at the end of the experiments.  相似文献   

3.
Electrical characteristics in a membrane constructed from a porous filter adsorbed with a lipid analogue, dioleoyl phosphate (DOPH), were investigated in a situation interposed between 100 mM NaCl + 3 mM CaCl2 and 100 mM KCl. Calcium ions affected significantly the membrane characteristics. The membrane potential was negative on the KCl side, which implies the higher permeability to K+ than Na+; this tendency was increased by a tiny amount of Ca2+. While the membrane showed a low electrical resistance of several k omega . cm2 under K+/Na+ gradient, it showed several M omega . cm2 by Ca2+. The surface structure of the membrane exhibited many voids in the low-resistance state, but the surface was covered by oil droplets in the high-resistance state. Oscillations of the membrane potential appeared spontaneously with application of the electrical current from the KCl side to the NaCl + CaCl2 side. The frequency was increased with the electrical current. All these results were explained comprehensively using an electrochemical kinetic model taking account of the Ca2+ binding effect, where DOPH assemblies make a phase transition between oil droplets due to Ca2+ and multi-bilayers with excess K+. The oscillation arises from coupling of the phase transition to accumulation and release of K+ or Ca2+. This membrane can be used as an excitable element regulated by Ca2+ in neuro-computer devices.  相似文献   

4.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

5.
Dependence of calcium ion efflux from the heart ventricles on the concentration of verapamil, fenigidine and nicardipine was studied in frogs, using Ca-sensitive electrodes. The effect of sodium and potassium ions was also investigated. It was established that dependence of calcium ion efflux (delta Ca2+) on the concentration of Ca-antagonists (B) may be expressed by the following formula: (Formula: see text). With cellular membrane depolarization 50 mM KCl, none of the blockers (10(-5) M) caused Ca2+ efflux from ventricular cells. Analogous phenomenon was noted in low-sodium solution (60 mM).  相似文献   

6.
《Experimental mycology》1984,8(4):370-377
Sporulation inA. astaci did not occur in a peptone-glucose growth medium, but was readily initiated when mycelia were transferred to distilled water or 1 mM CaCl2. If 1 mM Ca2+ was added to isolated primary cysts, zoospores emerged in about 6–8 h. Zoospores could be encysted by vigorous shaking or by growth medium addition without causing germination, and these cysts were instead able to produce zoospores. With this technique it was possible to achieve three consecutive zoospore generations. If 50 mM CaCl2 was added before ca. 10–15 min had elapsed after initiating encystment, the cysts germinated. Addition of calcium after this period did not induce germination. Calcium addition to germination-competent spores resulted in a sharp increase in protein synthesis, whereas addition to noncompetent cysts gave no such increase.  相似文献   

7.
Sealed vesicles were isolated from a plant pathogenic fungus Phytophthora megasperma f. sp. glycinea using a modification of a method previously developed for plant plasma membrane vesicle isolation. Vanadate-sensitive, proton pumping microsomal membrane vesicles were resolved on a linear sucrose density gradient and found to comigrate with a vanadate-sensitive ATPase. Both the proton pumping and ATPase activity of these vesicles had a pH optimum of 6.5 and demonstrated similar properties with respect to substrate specificity and inhibitor sensitivity. These properties were in agreement with previously published data on the Phytophthora plasma membrane ATPase. In contrast with previous reports there was no K+ stimulation of the plasma membrane ATPase and the Km for Mg:ATP (1:1 concentration ratio) was higher (2.5 mM). A comparison of anion (potassium salts) effects upon delta pH and delta psi formation in sealed Phytophthora plasma membrane vesicles revealed a correspondence between the relative ability of anions to stimulate proton transport and to reduce delta psi. The relative order for this effect was KCl greater than KBr much greater than KMes, KNO3, KClO3, K2SO4. This study presents a method for the isolation of sealed vesicles from Phytophthora hyphae. It also provides basic information on the plasma membrane H+-ATPase and its associated proton pumping activity.  相似文献   

8.
Depolarization of differentiated neuroblastoma X glioma (NG108-15) cells with KCl (50 mM) or veratridine (50 microM) stimulated Ca2+ accumulation, was detected by quin 2 fluorescence. Intracellular Ca2+ concentrations ([Ca2+]i) were elevated about threefold from 159 +/- 7 to 595 +/- 52 nM (n = 12). Ca2+ entry evoked by high extracellular K+ concentration ([K+]o) was voltage-dependent and enhanced by the dihydropyridine agonists, BAY K 8644 and CGP 28 392, in a dose-dependent manner. CGP 28 392 was less potent and less efficacious than BAY K 8644. The (+) and (-) stereoisomers of 202-791 showed agonist and antagonist properties, respectively. (+)-202-791 was less potent, but as efficacious as BAY K 8644. In the absence of KCl, BAY K 8644 had no effect on Ca2+ entry. Voltage-sensitive calcium channel (VSCC) activity was blocked by organic Ca2+ channel antagonists (nanomolar range) both before and after KCl treatment and also by divalent metal cations (micromolar range). High [K+]o-induced Ca2+ accumulation was dependent on external Ca2+, but not on external Na+ ions ([Na]o), and was insensitive to both tetrodotoxin (3 microM) and tetraethylammonium (10 microM). In contrast, veratridine-induced Ca2+ accumulation required [Na+]o, and was blocked by tetrodotoxin, but not by nimodipine (1 microM). Veratridine-induced Ca2+ accumulation was slower (approximately 45 s), smaller in magnitude (approximately 30% of [K+]o-induced Ca2+ entry), and also enhanced by BAY K 8644 (approximately 50%). VSCC were identified in neuronal hybrid (NG108-15 and NCB-20) cells, but not in glial (C6BU-1), renal epithelial (MDCK), and human astrocytoma (1321N1) cells. NG108-15 cells differentiated with 1.0 mM dibutyryl cyclic AMP showed greater VSCC activity than undifferentiated cultures. These results suggest that cultured neural cells provide a useful system to study Ca2+ regulation via ion channels.  相似文献   

9.
Incorporation of BK Ca2+-activated K+ channels into planar bilayers composed of negatively charged phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PI) results in a large enhancement of unitary conductance (gch) in comparison to BK channels in bilayers formed from the neutral zwitterionic lipid, phospatidylethanolamine (PE). Enhancement of gch by PS or PI is inversely dependent on KCl concentration, decreasing from 70% at 10 mM KCl to 8% at 1,000 mM KCl. This effect was explained previously by a surface charge hypothesis (Moczydlowski, E., O. Alvarez, C. Vergara, and R. Latorre. 1985. J. Membr. Biol. 83:273-282), which attributed the conductance enhancement to an increase in local K+ concentration near the entryways of the channel. To test this hypothesis, we measured the kinetics of block by external and internal Ba2+, a divalent cation that is expected to respond strongly to changes in surface electrostatics. We observed little or no effect of PS on discrete blocking kinetics by external and internal Ba2+ at 100 mM KCl and only a small enhancement of discrete and fast block by external Ba2+ in PS-containing membranes at 20 mM KCl. Model calculations of effective surface potential sensed by the K+ conduction and Ba2+-blocking reactions using the Gouy-Chapman-Stern theory of lipid surface charge do not lend support to a simple electrostatic mechanism that predicts valence-dependent increase of local cation concentration. The results imply that the conduction pore of the BK channel is electrostatically insulated from the lipid surface, presumably by a lateral distance of separation (>20 A) from the lipid head groups. The lack of effect of PS on apparent association and dissociation rates of Ba2+ suggest that lipid modulation of K+ conductance is preferentially coupled through conformational changes of the selectivity filter region that determine the high K+ flux rate of this channel relative to other cations. We discuss possible mechanisms for the effect of anionic lipids in the context of specific molecular interactions of phospholipids documented for the KcsA bacterial potassium channel and general membrane physical properties proposed to regulate membrane protein conformation via energetics of bilayer stress.  相似文献   

10.
Characterization and Distribution of Transferrin Receptors in the Rat Brain   总被引:7,自引:3,他引:4  
The mechanism of calcium transport across the plasma membrane of chromaffin cells was studied using plasma membrane vesicles prepared from cells of adrenal medulla. Purification of the plasma membrane was about 30-fold, based on the alpha-bungarotoxin binding activity. The isolated membrane vesicles have both Na+/Ca2+ exchange and calcium pump activities. The Na+/Ca2+ exchange activity increased with the free calcium concentration and was not saturated at 1 mM, the highest concentration tried. The K1/2 of the calcium pump for calcium is 0.06 microM. Part of the Na+/Ca2+ exchange activity was inhibited by preincubation of the membrane vesicles with veratridine and the effect of veratridine was reversed by tetrodotoxin. The calcium taken up by the calcium pump was released by 0.005% saponin, but was not affected by oxalate. The calcium taken up by the calcium pump was released by exchanging with the external sodium, which suggests that the two calcium transport systems are located on the same population of membrane vesicles. The above evidence indicates that both calcium transport activities are located on the plasma membrane and not on contaminating organelle membranes. The significance of the two calcium transport systems in regulation of cytosolic calcium concentration of chromaffin cells is discussed.  相似文献   

11.
The multi-ion nature of the pore in Shaker K+ channels.   总被引:7,自引:3,他引:4       下载免费PDF全文
We have investigated some of the permeation properties of the pore in Shaker K channels. We determined the apparent permeability ratio of K+, Rb+, and NH4+ ions and block of the pore by external Cs+ ions. Shaker channels were expressed with the baculovirus/Sf9 expression system and the channel currents measured with the whole-cell variant of the patch clamp technique. The apparent permeability ratio, PRb/PK, determined in biionic conditions with internal K+, was a function of external Rb+ concentration. A large change in PRb/PK occurred with reversed ionic conditions (internal Rb+ and external K+). These changes in apparent permeability were not due to differences in membrane potential. With internal K+, PNH4/PK was not a function of external NH4+ concentration (at least over the range 50-120 mM). We also investigated block of the pore by external Cs+ ions. At a concentration of 20 mM, Cs+ block had a voltage dependence equivalent to that of an ion with a valence of 0.91; this increased to 1.3 at 40 mM Cs+. We show that a 4-barrier, 3-site permeation model can simulate these and many of the other known properties of ion permeation in Shaker channels.  相似文献   

12.
Single crab (Callinectes danae) fibers were equilibrated with isotonic, high KCl solutions and were subsequently returned to the control saline. This caused marked swelling of the T tubules. Fibers treated with 100 mM KCl had a 2.5-mV residual depolarization, a 50% decrease in effective membrane resistance (Reff) and a 75% reduction in membrane time constant (tau m). These fibers exhibited large increases in membrane conductance upon depolarization and were inexcitable; membrane depolarization with current pulses elicited no contraction. The effects of the KCl treatment on membrane properties were not reproduced by treatment with high potassium gluconate solutions, which did not cause tubular swelling. Tetrabutylammonium (10 mM) or Ba ions (10-20 mM), but not tetraethylammonium (40-100 mM), Sr ions (15-70 mM), or procaine (1-8 mM) reversed the effects of the KCl treatment on Reff, tau m, membrane excitability, and excitation-contraction coupling. The time course of the Ba effects was consistent with the suggestion that the KCl treatment increases the K conductance of the tubular membranes, which in turn prevents the activation of voltage-dependent Ca channels located in the membranes of the T system. This results in inhibition of the Ca-dependent electrogenesis and consequently, the absence of contraction upon depolarization of the plasma membrane.  相似文献   

13.
The behaviour of encysting zoospores of Phytophthora palmivora during leaching conditions was studied. Zoospores encysted and germinated successfully on polycarbonate membranes after mechanical agitation. Transient (10 min) leaching treatments with nutrient-free buffer underneath the membranes resulted in abnormal encystment and poor germination. The disruption was greatest when leaching was applied during the first minutes after start of encystment and not observed after 20 min. The early sensitivity of cells to leaching coincided with the period when alkali-resistant cell walls were formed (2 – 6 min after mechanical agitation). Effects of calcium and organic nutrients on encystment during leaching and germination after these treatments were studied. The disruption of encystment by early leaching treatments, but not the suppression of cyst germination, was overcome by adding calcium chloride during mechanical agitation of zoospores. Leaching with calcium containing buffer resulted in suppressed cyst germination as was the case with buffer alone. Leaching with 0.1 % peptone containing buffer promoted consistently high encystment and germination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The effects of monovalent cations on calcium uptake by fragmented sarcoplasmic reticulum have been clarified. Homogenization of muscle tissue in salt-containing solutions leads to contamination of this subcellular fraction with actomyosin and mitochondrial membranes. When, in addition, inorganic cations are contributed by the microsomal suspension and in association with nucleotide triphosphate substrates there is an apparent inhibition of the calcium transport system by potassium and other cations. However, when purified preparations were obtained after homogenization in sucrose medium followed by centrifugation on a sucrose density gradient in a zonal rotor, calcium uptake and the associated adenosine triphosphatase activity were considerably activated by potassium and other univalent cations. When plotted against the log of the free calcium concentration there was only a slight increase in calcium uptake and ATPase activity in the absence of potassium ions but sigmoid-shaped curves were obtained in 100 mM K+ with half-maximal stimulation occurring at 2 muM Ca2+ for both calcium uptake and ATPase activity. The augmentation in calcium uptake was not due to an ionic strength effect as Tris cation at pH 6.6 was shown to be inactive in this respect. Other monovalent cations were effective in the order K+ greater than Na+ greater than NH4+=Rb+=Cs+ greater than Li+ with half-maximal stimulation in 11 mM K+, 16 mM Na+, 25 mM NH4+, Rb+, and Cs+ and in 50 mM Li+. There was nos synergistic action between K+ AND Na+ ions and both calcium uptak and associated ATPase were insensitive to ouabain. Thallous ions stimulate many K+-requiring enzymes and at one-tenth the concentration were nearly as effective as K+ ions in promoting calcium uptake. The ratio of Ca2+ ions transported to P1 released remained unchanged at 2 after addition of K+ ions indicating an effect on the rate of calcium uptake rather than an increased efficiency of uptake. In support of this it was found that during the stimulation of calcium uptake by Na+ ions there was a reduction in the steady state concentration of phosphorylated intermediate formed from [gamma-32P]ATP. It is considered that there is a physiological requirement for potassium ions in the relaxation process.  相似文献   

15.
Summary Zoospores of the obligately parasitic chytrid Rozella allomycis encyst and germinate after settling on a hypha of the host, the watermold Allomyces arbuscula. Zoospores deprived of a host also encyst after aging, but do not germinate. Hence, means were sought to induce encystment of young zoospores, in order to test whether they would subsequently germinate in the absence of a host.Zoospore suspensions were harvested and exposed to treatments known to degrade cytoplasmic microtubules and to depolymerize fibrillar structures in other organisms: ice temperature, hydrostatic pressure of 2000–10000 psi, cupric ions, and colchicine. These treatments induced rapid encystement—but no germination.The results suggest that the motility, the flagellated state, and the irregular, elongate shape of fungal zoospores depend on the intactness of their fibrillar skeletal structures. The results also support the hypothesis that contact of Rozella with the host surface has two sequential functions: (i) nonspecific (replaceable by other treatments) triggering of encystment, (ii) specific stimulation of germination.  相似文献   

16.
K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could contribute to the voltage-dependent Ca2+-activated macroscopic K+ current (IC) that has been observed in several neuronal somata preparations, as well as in other cells. Some of the properties reported here may serve to distinguish which type contributes in each case. A third class of smaller (40-50 pS) channels was also studied. These channels were independent of calcium over the concentration range examined (10(-7)-10(-3) M), and were also independent of voltage over the range of pipette potentials of -60 to +60 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We have examined the interaction between TEA and K+ ions in the pore of Shaker potassium channels. We found that the ability of external TEA to antagonize block of Shaker channels by internal TEA depended on internal K+ ions. In contrast, this antagonism was independent of external K+ concentrations between 0.2 and 40 mM. The external TEA antagonism of internal TEA block increased linearly with the concentration of internal K+ ions. In addition, block by external TEA was significantly enhanced by increases in the internal K+ concentration. These results suggested that external TEA ions do not directly antagonize internal TEA, but rather promote increased occupancy of an internal K+ site by inhibiting the emptying of that site to the external side of the pore. We found this mechanism to be quantitatively consistent with the results and revealed an intrinsic affinity of the site for K+ ions near 65 mM located approximately 7% into the membrane electric field from the internal end of the pore. We also found that the voltage dependence of block by internal TEA was influenced by internal K+ ions. The TEA site (at 0 internal K+) appeared to sense approximately 5% of the field from the internal end of the pore (essentially colocalized with the internal K+ site). These results lead to a refined picture of the number and location of ion binding sites at the inner end of the pore in Shaker K channels.  相似文献   

18.
Interpretation of the dual isotherm for ion absorption in beet tissue   总被引:10,自引:7,他引:3       下载免费PDF全文
Beet discs aged in 0.5 mM CaSO4 develop a capacity to absorb K+ and Cl from solutions of low concentration. The initial influx of these ions is described by a hyperbolic relationship with concentration in the range 0.01 to 0.5 mM KCl, which is identical with the system 1 absorption isotherm found in other tissues. A second hyperbolic isotherm, attributable to system 2, is found at higher concentrations (1-50 mM KCl).

When the transport of labeled ion to the vacuole is studied by wash-exchanging the bulk of the cytoplasmic label following the absorption period, it is noted that in the range of system 1, isotope influx to the vacuole increases with time as the concentration of labeled ions in the cytoplasm increases, while in the range of system 2, influx to the vacuole is constant from the beginning. Diminution of the cytoplasmic specific activity during radio-isotope absorption by prefilling the cytoplasm with the analogous unlabeled salt, markedly reduces subsequent radioisotope uptake to the vacuole only in the range of system 1. These experiments suggest that the cytoplasm serves as a mixing chamber, and that the plasma membrane controls ion uptake to the tissue at low concentrations, indicating that the system 1 isotherm reflects ion movement into the cytoplasm through the plasma membrane. Flux experiments support this conclusion, showing that development with age of the system 1 isotherm corresponds to a quantitatively similar increase in plasma membrane influx in 0.2 mM KCl.

At higher concentrations the outer membrane no longer rate-limits entry of ions to the vacuole. Isotope influx under these conditions, described by the system 2 isotherm, presumably reflects movement across the tonoplast.

  相似文献   

19.
Intact cells of marine pseudomonad B-16 (ATCC 19855) which have been washed with a solution of NaCl require only 0.001 M MgSO4 and 100 to 300 times this concentration of NaCl or KCl to prevent lysis. Conversion of intact cells to mureinoplasts, a process involving removal of the outer double-track layer (outer membrane) and the periplasmic space layer of the cell wall, approximately doubled the requirement for the three salts to prevent lysis. The formation of protoplasts from mureinoplasts by removing the peptidoglycan layer again doubled the requirement for Na+ and K+ salts but increased the requirement for the Mg-2+ salt 200- to 300-fold. Cells of the marine pseudomonad suspended in solutions containing Mg-2+ salts failed to lyse on subsequent repeated suspension in distilled water, whereas cells presuspended in NaCl lysed immediately. Isolated envelope layers including the peptidoglycan layer, when dialyzed against solutiions containing Mg-2+ salts, retained Mg-2+ after subsequent suspension in distilled water. Envelope layers exposed to solutions of Na+ or K+ salts failed to retain these ions after exposure to distilled water. Na+ displaced Mg-2+ from the cell envelope layers. The results obtained indicate that the capacity of Mg-2+ salts at very low concentration to prevent lysis of intact cells and mureinoplasts of this organism is due primarily to the interaction of Mg-2+ with the peptidoglycan layer of the cell wall. Ion interaction with the layers lying outside of the peptidoglycan layer contributes only a small amount to the mechanical strength of the wall.  相似文献   

20.
Dependence of the red blood cell calcium pump on the membrane potential   总被引:4,自引:0,他引:4  
(1) It is shown that the rate of calcium extrusion from intact human red cells is faster at a membrane potential of approximately +50 mV (inside) than at approximately -50 mV. (2) The positive potential applied was the chloride potential of KCl cells in a K-gluconate medium when the Ca2+ sensitive K+ channel was blocked by 0.3mM quinidine. The negative potential resulted from the high K+ permeability in Ca2+ loaded cells (the cells were loaded to a Ca2+ activity in the cell water of about 50 microM). (3) It is further demonstrated that the Ca2+ affinity of the pump ATPase is decreased both at the internal (high affinity) and external (low affinity) site by increasing the proton concentration. Acidification thus inhibits internally and stimulates externally. (4) An indirect effect of the membrane potential on the pump activity via the accompanying pH shifts on either side of the membrane could be ruled out by choosing Ca2+ concentrations which are fully activating at the internal Ca2+ binding site at pH 6.5 and not yet inhibitory at the external Ca2+ binding site at pH 8. (5) The result is compatible with the assumption that the human red cell Ca-pump is exchanging Ca2+ for protons, yet is electrogenic by virtue of a stoichiometry of 1H+:1Ca2+ for this exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号