首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of the silver nitrate impregnation method after Golgi-Kopsch in kittens and young cats the field 4 in the cerebral motor cortex has been studied. The motor cortex of the field 4 possesses certain heteromorphism. Besides usual stellate and pyramidal neurons, that differ from real ones by some morphological signs: their body is often round, the apical dendrite is much thinner than the corresponding dendrite of a pyramidal neuron, it does not produce oblique branches along the course, never gets into the I layer, the spines arrange less densely. According to the mode of dendrites setting off, the atypical pyramidal neurons can be divided into multipolar and spindle-like with horizontal or vertical branching of the dendrites. According to the spines distribution, the multipolar atypical neurons can be divided into spinous, rare-spinous and aspinous. With respect to various cellular forms and distribution of various types of neurons in layers, every of the areas (gamma, alpha, sfu, fu) possesses specific peculiarities. The greatest variability of the neurons have the field 4 gamma and 4 alpha, where, besides stellate and pyramidal, atypical neurons can be found. The stellate neurons of the field 4 gamma are characterized with a deep arrangement, their number is essentially less, than in other areas of the field 4. In the field 4 alpha they are situated in the layers II-III. Suprafundal and fundal parts of the field do not possess pyramidal atypical neurons and are characterized with presence of large amount of the stellate neurons. In respect to the axonal branching in the suprafundal part of the field 4, 2 types of the stellate cells are distinguished.  相似文献   

2.
3.
Vertically oriented bundles of apical dendrites in the cat motor cortex were studied by methods of light and electron microscopy. The presence of desmosome-like and dendro-dendritic contacts in the bundles is regarded as the structural basis for electrotonic interaction between neurons in the same column. Axo-spinous "en passant" contacts between the descending axon of the pyramids of layer III and the apical dendrite of pyramids in layer V, possibly serving to regulate the activity of the principal cortical output elements, are described.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 455–458, September–October, 1976.  相似文献   

4.
5.
6.
Unit responses of the isolated left celiac ganglion to stimulation of various nerves of the solar plexus were studied by intracellular microelectrode recording in cats before and after degeneration of the preganglionic fibers. The resting potential of the ganglionic neurons was ?62.2±2.9 mV and the amplitude of the spike potential 72.4±3.2 mV. The spike was followed by after-hyperpolarization with a mean amplitude of 24% of the spike amplitude and a duration of between 25 and 180 msec. A characteristic feature of the ganglion was the presence of orthodromic unit responses to stimulation of peripheral nerve fibers of the solar plexus. The higher threshold of activation of the neurons by peripheral fibers than by preganglionic fibers and the preservation of orthodromic unit responses to stimulation of peripheral nerves after degeneration of the preganglionic fibers are evidence that the peripheral reflex arc is closed in this ganglion. Neurons of the left celiac ganglion are divided into three groups. Only preganglionic fibers of the splanchnic nerve with different properties converge on the neurons of the first group (the most numerous); only afferent fibers of peripheral nerves converge on the neurons of the third group (the least numerous); both types of fibers terminate on neurons of the second group. This convergence may lie at the basis of the mechanism of the centrifugal and peripheral reflex interaction in the ganglion for coordinated visceral activity.  相似文献   

7.
It is well established that during cell secretion, membrane-bound secretory vesicles dock and fuse at the base of supramolecular cup-shaped structures at the cell plasma membrane called "porosomes", to expel intra-vesicular contents to the outside. In neurons, it has been demonstrated that 12-17 nm cup-shaped lipoprotein structure possessing a central plug are present at the presynaptic membrane, where 50 nm in diameter synaptic vesicles transiently dock and fuse to release neurotransmitter. In the past decade, the neuronal porosome has been isolated and its major chemical composition determined. Additionally, the porosome has been both structurally and functionally reconstituted into artificial lipid membrane, establishing its role as the secretory portal in neurons. Studies utilizing atomic force and electron microscopy, combined with electron density and 3D contour mapping, provide at the nanoscale, the structure and assembly of proteins within the neuronal porosome. In the current study, ultrahigh resolution imaging of the presynaptic membrane of isolated brains from both rats and cats, demonstrate for the first time, the presence of neuronal porosomes in cat brain, and further confirms the presence of porosomes at the presynaptic membrane in rat brain synaptosomes. Results from the present study further confirm the cup-shaped morphology of porosomes in the rat brain, and demonstrates their similar shape and size in the cat nerve terminal. The study also demonstrates for the first time, the universal presence of similar porosomes in different species of mammals.  相似文献   

8.
9.
It is well established that during cell secretion, membrane-bound secretory vesicles dock and fuse at the base of supramolecular cup-shaped structures at the cell plasma membrane called “porosomes”, to expel intra-vesicular contents to the outside. In neurons, it has been demonstrated that 12–17 nm cupshaped lipoprotein structure possessing a central plug are present at the presynaptic membrane, where 50 nm in diameter synaptic vesicles transiently dock and fuse to release neurotransmitters. In the past decade, the neuronal porosome has been isolated and its major chemical composition determined. Additionally, the porosome has been both structurally and functionally reconstituted into artificial lipid membrane, establishing its role as the secretory portal in neurons. Studies utilizing atomic force and electron microscopy, combined with electron density and 3D contour mapping, provide at the nanoscale, the structure and assembly of proteins within the neuronal porosome. In the current study, ultrahigh resolution imaging of the presynaptic membrane of isolated brains from both rats and cats, demonstrate for the first time, the presence of neuronal porosomes in cat brain, and further confirms the presence of porosomes at the presynaptic membrane in rat brain synaptosomes. Results from the present study further confirm the cup-shaped morphology of porosomes in the rat brain, and demonstrates their similar shape and size in the cat nerve terminal. The study also demonstrates for the first time, the universal presence of similar porosomes in different species of mammals.  相似文献   

10.
It is shown by the use of Golgi's method in Antonova's modification that the neuronal structure of the periaqueductal gray matter (PGM) in the frontal plane is characterized by the presence of small and medium-sized cells of "reticular type," which can be subdivided into three types: fusiform, triangular, and multipolar. On the basis of the visual distribution of these types of neurons and also of statistical analysis of 800 identified neurons, two regions can be distinguished: medial, directly surrounding the aqueduct of Sylvius, containing small neurons, among which the fusiform kind predominate significantly (P<0.001), and a lateral region with larger neurons, with significantly (P<0.001) more triangular cells. Neurons in the medial region show a characteristic and strong (P<0.001) tendency for their dendrites to be oriented toward the lumen of the aqueduct, and through them the physiologically active substances of the CSF may influence the functional activity of neurons of PGM.Central Research Institute of Reflex Therapy, Moscow City Council Main Health Board, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 773–777, November–December, 1984.  相似文献   

11.
12.
13.
Responses of neurons in area 7 of the parietal association cortex during and after formation of a defensive conditioned reflex to sound were recorded in waking cats. Changes in spike responses of the neurons as a result of the onset of conditioned reflex limb movements were observed in 68% of neurons. Spike responses of neurons formed as a result of learning appeared only if conditioned-reflex limb movements appeared, and they were not observed if, for some reason or other, movements were absent after presentation of the positive conditioned stimulus or on extinction of the reflex. Responses of 46% neurons to conditioned stimulation preceded the conditioned-reflex motor responses by 50–450 msec. The remaining responding neurons were recruited into the response after the beginning of movement. Characteristic spike responses of neurons to the conditioned stimulus appeared 500–900 msec before the beginning of movement and, in the case of appearance of special, "prolonged" motor responses of limb withdrawal, evoked by subsequent reinforcing stimulation.  相似文献   

14.
15.
The neuronal organization of the lateral basilar region (LBR) of gray matter in the cervical portion of the cat spinal cord was studied by light and electron microscopy. It was found that LBR neurons form a homogeneous group with regard to the size of their soma. The ordinary pale ultrastructure of the cytoplasm is found in 96.8% of neurons examined. The ultrastructure of the cytoplasm of the small cells (3.2%) is dark and their matrix has high electron density. Most endings on LBR neurons have spherical vesicles (of the S-type). Endings with flattened vesicles (F-type) are next in order of numerical frequency. In some endings, besides the ordinary synaptic vesicles, there are other vesicles with an osmiophilic center, and endings with a dense matrix and numerous spherical vesicles. Endings of the F-type are relatively more numerous on dendrites of LBR neurons than on their soma. Axodendritic synapses form 87.8% of the synaptic connections of the LBR, and axo-somatic synapses 9.2%. The few axo-axonal synapses are formed by small endings with small synaptic vesicles and large plaques with spherical vesicles. The latter frequently make contact with several dendrites simultaneously. The functional role of the various neuronal structures of LBR in the transmission of descending and afferent influences is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 296–302, May–June, 1972.  相似文献   

16.
Neuronal interaction in the cat cerebellum was investigated by cross correlation analysis techniques. Excitatory connections of varying effectiveness were found between neurons of 13 out of 90 pairs investigated (or 14%). Inhibitory interaction was observed in 38 pairs, or 42%. Neurons of 26 pairs (40%) had shared inputs. Effectiveness of connections between cerebellar cortex neurons was demonstrated by changing stimulus parameters. Findings obtained agree with existing data on the functional organization of the cerebellar cortex. Possible reasons for the large numbers of inhibitory connections discovered are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 672–678, September–October, 1987.  相似文献   

17.
The responses of cortical cells to gratings and bars were compared. The excitatory and inhibitory on-and off-zones of a simple cell are composed of on- and off-subfields of CGL. Any zone is formed by an opponent pair of subfields one of which gives an excitatory effect, the other — inhibitory. Such organization assumes the linear properties of a simple field. The deviations from linearity are due to spatial dis-placements of the subfields, heterogeneity of subfields, or the absence of one subfield in the opponent pair. Subfields may be both phasic and tonic, even in the same RF. Analysis of the most common type of a complex cell with modulated responses against unmodulated background shows that a mask eliminating stimulation of any half of the RF causes (according to the theory of filtres) increasing the bandwidth due to the increase or the appearance of responses to side low and high frequencies. The modulated components of the responses from both halves of the RF are out of phase. Analysis of this fact and the responses to thin bars suggests that a complex field is formed by linear and nonlinear subsystems converging onto output neuron. Other types of complex fields are organized by different combinations of subsystems. Limited in area by masking the RF responds to much higher spatial frequencies than the whole RF. The optimal frequency in two-dimensional spatial frequency characteristics of the RF does not change with orientation. Simple RFs and a part of complex RF calculate the amplitude and the phase of the stimulus, the other part of complex RFs (with unmodulated response) calculate only amplitude. Given all this, the RFs are grating filters of spatial frequency.  相似文献   

18.
BACKGROUND: The mammalian brain consists of the cerebral cortical sheet, which is composed of many distinct areas, the cerebellar cortex, and many non-cortical nuclei. Powerful neuroanatomical techniques have revealed a large number of connections between these structures. The large number of brain structures and the very many connections between them form a strikingly complex network. The complexity of this network has made it difficult to understand how the central nervous system is organized. Recently, however, optimization analysis of an important subset of central nervous connections that occur between the different areas of the cerebral cortex has produced understandable and quantitative representations of the organization of cortical systems of the primate brain. RESULTS: Here we briefly report the extension of this approach to the cortical systems of the cat. There were four connectional clusters of cortical areas in the cat. These clusters of areas corresponded to the visual, auditory, and somato-motor systems, and to the frontal and limbic areas, which we call the fronto-limbic complex. All the major sensory systems were hierarchically organized, and their 'higher' stations were more closely associated with the fronto-limbic complex than were their 'lower' stations. CONCLUSIONS: Features of the organization of the cat brain, together with earlier primate results, suggest that there may be a common cortical plan in mammals. We suggest that this common plan may involve relatively discrete, hierarchically organized, cortical sensory systems and a topologically central fronto-limbic complex. Specific variations on this wiring plan may relate to evolutionary history and selection for particular ecological niches.  相似文献   

19.
Evoked potentials were recorded in the system of raphe nuclei in experiments on unanesthetized, immobilized cats. Somatic stimulation proved to be the most effective of the different stimulations used (light flash, sound click, electrical stimulation of the skin of the limbs). Sound and light stimulation did not evoke pronounced responses, or the latter (to sound) were of a very low amplitude and irregular. In the second series of experiments on cats narcotized with nembutal (30–35 mg/kg) the spontaneous activity and activity evoked by somatic stimulation of single neurons of the caudal part of the raphe nuclei were studied. The overwhelming majority of neurons were characterized by spontaneous activity which changed (inhibited or facilitated) under the effects of somatic (especially repeated) stimulation; most of them reacted to stimulation of the skin of any limb. In the case of paired stimulation of the skin of limbs on different sides at large intervals (40–60 msec), inhibition of the test discharge occurred, whereas at small intervals summation (simple addition) of the impulses occurred. In their general characteristics the neurons of the raphe nuclei apparently differ little from the neurons of the reticular formation of the brain stem.Institute of Electrophysiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 32–42, January–February, 1971.  相似文献   

20.
Receptive fields of neurons in Area 17 of the visual cortex were investigated in cats. Concentrically shaped fields, fields responding selectively to orientation of a strip or edge, and fields which can be regarded as intermediate between the first two types are described. The boundary between zones of summation and of lateral inhibition coincides in some receptive fields with the boundary between central and peripheral zones with opposite forms of response, while in other fields they do not coincide. For some cells there is no peripheral zone or it may disappear with worsening of the state of function. Cells were observed for which an increase in area of the stimulus in the central zone inhibits the response reaction. Analysis of these data suggests that several cells of the geniculate ganglion converge on some cortical neurons, and several cortical cells on others. An effect of adaptive inhibition was found in which constant illumination of an area in the center of the receptive field inhibits the response in another part. It is shown that this effect is unconnected with the action of scattered light. Constant illumination of the peripheral part of the receptive field deinhibits adaptive inhibition. The boundary between the zones of summation and of lateral inhibition coincides with the boundary between the zones of adaptive inhibition and deinhibition.I. V. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 90–100, July–August, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号