首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This report describes the responses of single afferent fibers in the posterior lateral line nerve of the goldfish, Carassius auratus, to pure tone and to amplitude-modulated sinusoidal wave stimuli generated by a dipole source (stationary vibrating sphere). Responses were characterized in terms of output-input functions relating responses to vibration amplitude, peri-stimulus time histograms relating responses to stimulus duration, and the degree of phase-locking to both the carrier frequency and the modulation frequency of the amplitude-modulated stimulus. All posterior lateral line nerve fibers responded to a pure sine wave with sustained and strongly phase-locked discharges. When stimulated with amplitude-modulated sine waves, fibers responded with strong phase-locking to the carrier frequency and, in addition, discharge rates were modulated according to the amplitude modulation frequency. However, phase-locking to the amplitude modulation frequency was weaker than phase-locking to the carrier frequency. The data indicate that the discharges of primary lateral line afferents encode both the carrier frequency and the modulation frequency of an amplitude-modulated wave stimulus. Accepted: 2 June 1999  相似文献   

3.
Significant inhibition of allogeneic cytotoxicity of the target cell MPC-11 by the murine cytotoxic T-lymphocyte line CTLL-1 was observed when the 4-h cytotoxicity assay was conducted in the presence of a 450-MHz field sinusoidally amplitude-modulated at 60 Hz. Exposure of the effector cells to the field prior to adding them to the target cells in the cytolytic assay resulted in a similar inhibition, suggesting a direct interaction of the field with the cytolytic T lymphocyte. The inhibition was preferentially expressed during the early allogeneic recognition phase. Field-exposed cytolytic cells recovered their full cytolytic capacity in 12.5 h. A differential susceptibility was observed with modulation frequencies from 0 to 100 Hz. Peak suppression occurred at 60 Hz modulation, with progressively smaller effects at 40, 16, and 3 Hz. The unmodulated carrier wave did not affect the cytotoxicity. Effects with 80- and 100-Hz modulation were smaller than at 60 Hz. These results demonstrate an inhibitory but recoverable effect by certain amplitude modulations of weak nonionizing radiation upon the cell-mediated cytolytic immune response.  相似文献   

4.
Spike discharges of medullary units ofRana ridibunda in response to tones of optimal frequency for the neuron, with sinusoidal amplitude modulation, was studied. Reproduction of sound modulation in unit activity was assessed by the use of phase histograms of responses corresponding to the period of modulation. Amplitude modulation was reproduced in the firing pattern of neurons of the dorsal nucleus over a wide range of modulation frequencies and carrier levels. Accentuation of small changes of amplitude for modulation frequencies of 70–150 Hz was observed in many neurons of the superior olives. The phase of the response was a linear function of modulation frequency both in the dorsal nucleus and in the superior olives. The greatest enhancement of amplitude changes corresponded to low modulation indices.Academician N. N. Andreev Acoustics Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 390–396, May–June, 1985.  相似文献   

5.
B lymphocytes collected from normal ICR Swiss mouse spleens were exposed in vitro in a Crawford cell to 147-MHz radiofrequency (RF) radiation, amplitude modulated by a 9-, 16-, or 60-Hz sine wave. The power densities ranged between 0.11 and 48 mW/cm2. The irradiated samples and the controls were maintained at 37 degrees C or 42 degrees C, with temperature variations less than 0.1 degrees C. Immediately after a 30-minute exposure, the distribution of antigen-antibody (Ag-Ab) complexes on the cell surface was evaluated at 37 degrees C by immunofluorescence. Under normal conditions (37 degrees C, no RF), Ag-Ab complexes are regrouped into a polar cap by an energy-dependent process. Our results demonstrate that the irradiated cells and the nonirradiated controls capped Ag-Ab complexes equally well after exposure at 37 degrees C. Capping was equally inhibited at 42 degrees C in both the controls and irradiated cells. No statistically significant differences in capping were observed between the RF-exposed and control samples at any of the modulation frequencies and power densities employed as long as both preparations were maintained at the same temperature.  相似文献   

6.
Spike response in torus semicircularis units to the effects of uninterrupted characteristic frequency tones amplitude-modulated by pseudorandom noise were investigated during experiments on immobilizedRana ridibunda. Period histograms of modulating waveform of 512 msec duration (both modulating polarities) were produced for 32 units. Almost all neurons investigated responded exclusively to the positive half of the modulating signal. Difference histograms obtained by calculating period histograms for different polarities of the envelope faithfully reproduced the dynamics of signal amplitude in four units. The remainder responded only to envelope maxima, without reproducing amplitude dynamics among these; over half the units represented only some of the envelope maxima, moreover. Certain cells were found which retained their specific pattern of response to pseudorandom noise over a wide range of carrier intensities.N. N. Andreev Acoustical Institute, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 227–235, March–April, 1990.  相似文献   

7.
We derive mathematically the output of Corey and Hudspeth's hair cell transducer function for the following cases: (1) the input is a single carrier whose output is modulated by the sum of two sinusoids; (2) the input is the sum of two carriers, each of which is amplitude-modulated by a single sinusoid. The theoretical results are similar to the results of an experiment in which field potentials were recorded from the human scalp while one ear was stimulated with auditory waveform (1) and with auditory waveform (2) of the cases above.  相似文献   

8.
In experiments with cats under the hexenal anesthesia it has been found that the transmission of information in multineuronic reflex ring carries out by frequency-dependent way. The optimum frequency subrange corresponds to each meaning of the modulation depth. Appearing signal distortions are accompanied by the phase lead of dorsal potentials with maximum on "resonance" frequency. The mechanism of presynaptic inhibition serves as control command amplifier. For all this the information signal amplitude grows, signal relation to noise increases, noise immunity of information transmission through the neuronic communication channel of multineuronic reflex ring improves considerably.  相似文献   

9.
Responses of most single neurons of the torus semicircularis ofRana ridibunda to stimuli of characteristic frequency and with low (10–30%) sinusoidal amplitude modulation were considerably stronger than those of the same neurons to pure tones. Analysis of phase histograms synchronized with the period of modulation was used to study dependence of the response on the frequency of modulation. In some cells the degree of modulation of the phase histogram fell steadily with an increase in modulation frequency, but in others a maximum was found in the 10–20 Hz region. Usually modulations of the phase histogram were significantly greater than stimulus modulation. The phase angle between the maximum of stimulus amplitude and the maximum of the unit response increased as an approximately linear function of the increase in modulation frequency.N. N. Andreev Acoustic Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 3, pp. 264–271, May–June, 1980.  相似文献   

10.
The membrane potential of isolated cells of Chara braunii or Nitella flexilis was monitored while the cells were exposed, at nominal power densities from 2 to 1,000 W/m2, to 147-MHz radiation amplitude modulated at frequencies from 4 to 64 Hz. Phase-sensitive detection was used to seek radiation-correlated changes in the membrane potential, and none were apparent under any of the conditions used in this investigation.  相似文献   

11.
Calcium (45Ca2+) efflux was studied from preloaded cortex in cats immobilized under local anesthesia, and exposed to a 3.0-mW/cm2 450-MHz field, sinusoidally amplitude modulated at 16 Hz modulation depth 85%). Tissue dosimetry showed a field of 33 V/m in the interhemispheric fissure (rate of energy deposition 0.29 W/kg). Field exposure lasted 60 min. By comparison with controls, efflux curves from field exposed brains were disrupted by waves of increased 45Ca2+ efflux. These waves were irregular in amplitude and duration, but many exhibited periods of 20-30 min. They continued into the postexposure period. Binomial probability analysis indicates that the field-exposed efflux curves constitute a different population from controls at a confidence level of 0.96. In about 70% of cases, initiation of field exposure was followed by increased end-tidal CO2 excretion for about 5 min. However, hypercapnea induced by hypoventilation did not elicit increased 45Ca2+ efflux. Thus this increase with exposure does not appear to arise as a secondary effect of raised cerebral CO2 levels. Radioactivity measurements in cortical samples after superfusion showed 45Ca2+ penetration at about 1.7 mm/hr, consistent with diffusion of the ion in free solution.  相似文献   

12.
Single-unit recordings were made from 143 neurons in the frog (Rana p. pipiens) inferior colliculus (IC) to investigate how free-field sound direction influenced neural responses to sinusoidal-amplitude-modulated (SAM) tone and/or noise. Modulation transfer functions (MTFs) were derived from 3 to 5 sound directions within 180° of frontal field. Five classes of MTF were observed: low-pass, high-pass, band-pass, multi-pass, and all-pass. For 64% of IC neurons, the MTF class remained unchanged when sound direction was shifted from contralateral 90° to ipsilateral 90°. However, the MTFs of more than half of these neurons exhibited narrower bandwidths when the loudspeaker was shifted to ipsilateral azimuths. There was a decrease in the cut-off frequency for neurons possessing low-pass MTFs, an increase in cut-off frequency for neurons showing high-pass MTFs, or a reduction in the pass-band for neurons displaying bandpass MTFs. These results suggest that sound direction can influence amplitude modulation (AM) frequency tuning of single IC neurons.Since changes in periodicity of SAM tones alter both the temporal parameters of sounds as well as the sound spectrum, we examined whether directional effects on spectral selectivity play a role in shaping the observed direction-dependent AM selectivity. The directional influence on AM selectivity to both SAM tone and SAM noise was measured in 62 neurons in an attempt to gain some insight into the mechanisms that underlie directionally-induced changes in AM selectivity. Direction-dependent changes in the shapes of the tone and noise derived MTFs were different for the majority of IC neurons (55/62) tested. These data indicate that a spectrally-based and a temporally-based mechanism may be responsible for the observed results.Abbreviations AM amplitude modulation - CF characteristic frequency - DI direction index - FR isointensity frequency response - GABA gamma-aminobutyric acid - IC inferior colliculus - ICc central nucleus of the inferior colliculus - ITD interaural time difference - MTF modulation transfer function - PSTH peri-stimulus time histogram - SAM sinusoidal-amplitude-modulated - SC synchronization coefficient - CN cochlear nucleus  相似文献   

13.
A method of constructing shuffled autocorrelation functions (SACF) was used to characterize single units in the dorsal medullar nucleus of the common frog (Rana temporaria). A continuous characteristic frequency tone modulated by repeating pieces of low-frequency noise was used as a stimulus. SACF was calculated as the correlation between the firing discharges evoked by different repeating pieces of the low-frequency noise. This approach obviates the influence of refractoriness and also considerably increases the sample representativity. Comparison of the SACF with the conventional ACF permits estimating the temporal dynamics of changes in the postspike excitability of the neuron. Analysis of several examples demonstrates the possibility of facilitation just after the period of absolute refractoriness in some tonic units. Neurons exhibiting only a phasic response to the onset of nonmodulated voice-frequency pieces were able to selectively respond to special moments of noise amplitude modulation. These cells demonstrate extremely high synchronism of reaction. We also describe a neuron characterized by an intrinsic periodicity of firing not connected with the dynamics of arriving stimuli.  相似文献   

14.
Average firing rate of the auditory nerve fiber as function of the level of the tone with the frequency equal to characteristic frequency of the fibers, can be defined as an input-output characteristic. It is known that the steepening of the input-output characteristic of the real auditory nerve fiber is more, and the width is less than the spontaneous activity of the fiber. The latter characterizes fiber's ability to generate spikes, if the stimulus is absent. However it is known, that the real auditory nerve fibers with low spontaneous activity reproduce amplitude modulation of the signals much better, than the fibers with high spontaneous activity. From the results of simulation experiments, it follows that the dynamic properties of the auditory nerve fibers, providing fine tuning or adaptation of a fiber threshold under the stimulus level but not the static input-output characteristics, are the reason of fibers reproduction of stimuli amplitude modulations. However the auditory nerve fibers with high spontaneous activity due to abrupt input-output characteristic are capable to reproduce modulations of sounds whose levels are lower than a threshold of the fiber, if a weak signal adds to a weak broadband noise. This is a phenomenon of stochastic resonance found in the reactions of auditory nerve fibers.  相似文献   

15.
Unit responses of the inferior colliculi of anesthetized rats to amplitude-modulated sounds during a change in the carrier intensity were investigated. The following unit response characteristics were assessed: the number of spikes in the response, the range of reproduction of the modulation frequency, the response duration, and the pattern of the spike response relative to the envelope of the amplitude-modulated stimulus. The following parameters of the stimulus were varied: carrier intensity (usually of optimal frequency or noise), frequency of modulation (from 2 to 100 Hz), and carrier frequency. With a decrease in the intensity of the carrier in the case of monotonic neurons, and also with an increase or decrease in the intensity of the carrier relative to its optimal level in nonmonotonic neurons, the following changes in the discharge were regularly observed: the number of spikes in the response and its duration were reduced down to the appearance of only one initial response, the range of reproduction of the rhythm of modulation was narrowed, and the response pattern was sharply modified.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR. I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 355–366, July–August, 1973.  相似文献   

16.
In 13 laboratory rats with bilateral auditory cortex ablation, the border frequency of amplitude-modulation still allowing differentiation between tonal and amplitude-modulated stimuli, did not change after bilateral section of the brachii of the posterior colliculi. Bilateral auditory cortex ablation and section of the brachii drastically disturbed this differentiation when the modulation frequencies were higher than 27-31 Hz. The data suggest that the completion of coding of amplitude-modulated stimuli does not take place at the level of the medial geniculate body, and that border frequencies defined after auditory cortex ablation are linked with the frontier posterior colliculi--thalamo-cortical system.  相似文献   

17.
Cerebral cortex tissue slices and cerebral hemispheres prepared from Gallus domesticus chicks were exposed to 147 MHz radiofrequency radiation, amplitude modulated at 16 Hz and applied at a power density of 0.75 mW/cm2, to determine the effect of such exposure of 45Ca2+ efflux from the avian brain tissue. Statistical analysis of these data demonstrates that such exposure has no significant effect on 45Ca2+ efflux.  相似文献   

18.
19.
The effect of continuous (CW; 2.45 GHz carrier frequency) or amplitude-modulated (AM; 50 Hz square wave) microwave radiation on the immune response was tested. CW exposures (6 days, 3 h/day) induced elevations of the number of antibody-producing cells in the spleen of male Balb/c mice (+37%). AM microwave exposure induced elevation of the spleen index (+15%) and antibody-producing cell number (+55%) in the spleen of male mice. No changes were observed in female mice. It is concluded that both types of exposure conditions induced moderate elevation of antibody production only in male mice. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Experiments on bats using the technique of anterograde and retrograde horseradish peroxidase transport showed that neurons of the superior olivary complex and inferior colliculus responding specifically to amplitude-modulated ultrasonic stimuli have projections to the oral reticular nucleus of the pons. Neurons of this part of the reticular formation respond to presentation of amplitude-modulated stimuli by a synchronization response, like neurons of specific auditory formations. It is concluded that the flow of action potentials from neurons coding amplitude modulation of the stimulus at the superio olivary and inferior collicular levels spreads outside the auditory system.A. A. Ukhtomskii Physiological Research Institute. A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 800–807, November–December, 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号