首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 10(4) cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 10(3) cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed.  相似文献   

2.
Effect of aerosolization on subsequent bacterial survival   总被引:1,自引:0,他引:1  
To determine whether aerosolization could impair bacterial survival, Pseudomonas syringae and Erwinia herbicola were aerosolized in a greenhouse, the aerosol was sampled at various distances from the site of release by using all-glass impingers, and bacterial survival was followed in the impingers for 6 h. Bacterial survival subsequent to aerosolization of P. syringae and E. herbicola was not impaired 1 m from the site of release. P. syringae aerosolized at 3 to 15 m from the site of release at a temperature of 12 degrees C and a relative humidity of 80% survived 35- to 65-fold better than P. syringae released at 27 degrees C and a relative humidity of 40%. No difference was observed in the survival of P. syringae and E. herbicola following aerosolization at the same temperature and relative humidity. Bacteria sprayed directly onto bean and oat plants established stable populations at comparable numbers on both plants over an 8-day period following inoculation. Bacteria that inoculated adjacent plants by drifting downwind up to 5 m were detectable at an initial population of 10(2) CFU/g on oats and 10(5) CFU/g on beans 2 h after the spray. However, bacterial populations on both plants were undetectable within 48 h.  相似文献   

3.
Effect of aerosolization on subsequent bacterial survival.   总被引:7,自引:6,他引:1       下载免费PDF全文
To determine whether aerosolization could impair bacterial survival, Pseudomonas syringae and Erwinia herbicola were aerosolized in a greenhouse, the aerosol was sampled at various distances from the site of release by using all-glass impingers, and bacterial survival was followed in the impingers for 6 h. Bacterial survival subsequent to aerosolization of P. syringae and E. herbicola was not impaired 1 m from the site of release. P. syringae aerosolized at 3 to 15 m from the site of release at a temperature of 12 degrees C and a relative humidity of 80% survived 35- to 65-fold better than P. syringae released at 27 degrees C and a relative humidity of 40%. No difference was observed in the survival of P. syringae and E. herbicola following aerosolization at the same temperature and relative humidity. Bacteria sprayed directly onto bean and oat plants established stable populations at comparable numbers on both plants over an 8-day period following inoculation. Bacteria that inoculated adjacent plants by drifting downwind up to 5 m were detectable at an initial population of 10(2) CFU/g on oats and 10(5) CFU/g on beans 2 h after the spray. However, bacterial populations on both plants were undetectable within 48 h.  相似文献   

4.
Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 104 cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 103 cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed.  相似文献   

5.
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (10(7) versus 10(5) CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (10(7) versus 10(6) CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (10(5) to 10(6) CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>10(8) CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.  相似文献   

6.
The bacterial epiphyte Pseudomonas syringae MF714R was cultured on agar or in broth or collected from colonized leaves; it was then inoculated onto greenhouse-grown bean plants incubated in a growth chamber at low relative humidity or in the field or onto field-grown bean plants. Cells cultured in liquid medium survived the least well after inoculation of leaf surfaces under all conditions. Cells cultured in solid medium exhibited the highest percent survival and desiccation tolerance in the growth chamber but generally survived less well in the field than did cells harvested from plants. Cells harvested from plants and inoculated onto plants in the field usually exhibited the highest percent survival, started to increase in population earlier, and reached a higher number than did cells cultured in vitro. Differences in field survival were apparently not attributable to differential UV tolerance. The observed effects of phenotypic plasticity on epiphytic survival and colonization should be considered in risk assessment studies, in studies of bacterial epidemiology, and in the use of microbial antagonists for biological pest control.  相似文献   

7.
Population sizes of two ice nucleation-active strains of Pseudomonas syringae were compared on leaves in controlled environments and in the field to determine the ability of microcosm studies to predict plant habitat preferences in the field. The P. syringae strains investigated were the parental strains of recombinant deletion mutant strains deficient in ice nucleation activity that had been field tested for their ability to control plant frost injury. The population size of the P. syringae strains was measured after inoculation at three field locations on up to 40 of the same plant species that were studied in the growth chamber. There was seldom a significant relationship between the mean population size of a given P. syringae strain incubated under either wet or dry conditions in microcosms and the mean population size which could be recovered from the same species when inoculated in the field. Specifically, on some plant species, the population size recovered from leaves in the field was substantially greater than from that species in a controlled environment, while for other plant species field populations were significantly smaller than those observed under controlled conditions. Population sizes of inoculated P. syringae strains, however, were frequently highly positively correlated with the indigenous bacterial population size on the same plant species in the field, suggesting that the ability of a particular plant species to support introduced bacterial strains is correlated with its ability to support large bacterial populations or that indigenous bacteria enhance the survival of introduced strains. Microcosm studies therefore seem most effective at assessing possible differences between parental and recombinant strains under a given environmental regime but are limited in their ability to predict the specific population sizes or plant habitat preferences of bacteria on leaves under field conditions.  相似文献   

8.
The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% +/- 8.2%) than that in monospecific aggregates of these two strains (1.6% +/- 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions on leaf surfaces and the implications for biological control of pathogenic and other deleterious microorganisms is discussed.  相似文献   

9.
The epiphytic fitness of Salmonella enterica was assessed on cilantro plants by using a strain of S. enterica serovar Thompson that was linked to an outbreak resulting from cilantro. Salmonella serovar Thompson had the ability to colonize the surface of cilantro leaves, where it was detected by confocal laser scanning microscopy (CLSM) at high densities on the veins and in natural lesions. The population sizes of two common colonizers of plant surfaces, Pantoea agglomerans and Pseudomonas chlororaphis, were 10-fold higher than that of the human pathogen on cilantro incubated at 22 degrees C. However, Salmonella serovar Thompson achieved significantly higher population levels and accounted for a higher proportion of the total culturable bacterial flora on cilantro leaves when the plants were incubated at warm temperatures, such as 30 degrees C, after inoculation, indicating that the higher growth rates exhibited by Salmonella serovar Thompson at warm temperatures may increase the competitiveness of this organism in the phyllosphere. The tolerance of Salmonella serovar Thompson to dry conditions on plants at 60% relative humidity was at least equal to that of P. agglomerans and P. chlororaphis. Moreover, after exposure to low humidity on cilantro, Salmonella serovar Thompson recovered under high humidity to achieve its maximum population size in the cilantro phyllosphere. Visualization by CLSM of green fluorescent protein-tagged Salmonella serovar Thompson and dsRed-tagged P. agglomerans inoculated onto cilantro revealed that the human pathogen and the bacterial epiphyte formed large heterogeneous aggregates on the leaf surface. Our studies support the hypothesis that preharvest contamination of crops by S. enterica plays a role in outbreaks linked to fresh fruits and vegetables.  相似文献   

10.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

11.
The relationship between nutrients leached onto the leaf surface and the colonization of plants by bacteria was studied by measuring both the abundance of simple sugars and the growth of Pseudomonas fluorescens on individual bean leaves. Data obtained in this study indicate that the population size of epiphytic bacteria on plants under environmentally favorable conditions is limited by the abundance of carbon sources on the leaf surface. Sugars were depleted during the course of bacterial colonization of the leaf surface. However, about 20% of readily utilizable sugar, such as glucose, present initially remained on fully colonized leaves. The amounts of sugars on a population of apparently identical individual bean leaves before and after microbial colonization exhibited a similar right-hand-skewed distribution and varied by about 25-fold from leaf to leaf. Total bacterial population sizes on inoculated leaves under conditions favorable for bacterial growth also varied by about 29-fold and exhibited a right-hand-skewed distribution. The amounts of sugars on leaves of different plant species were directly correlated with the maximum bacterial population sizes that could be attained on those species. The capacity of bacteria to deplete leaf surface sugars varied greatly among plant species. Plants capable of supporting high bacterial population sizes were proportionally more depleted of leaf surface nutrients than plants with low epiphytic populations. Even in species with a high epiphytic bacterial population, a substantial amount of sugar remained after bacterial colonization. It is hypothesized that residual sugars on colonized leaves may not be physically accessible to the bacteria due to limitations in wettability and/or diffusion of nutrients across the leaf surface.  相似文献   

12.
The direct viable count method, used to detect viable but nonculturable bacteria in aquatic systems, was modified to examine epiphytic populations of Pseudomonas syringae. Viable-population sizes determined from the number of cells that elongated when incubated with yeast extract and nalidixic acid were compared with those determined by the conventional plate count method. The plate count method accurately determined the number of viable cells in epiphytic P. syringae populations in a state of active growth under conditions of high relative humidity. The plate count method also accurately determined the number of viable cells in P. syringae inoculum, or a growing P. syringae population, subject to desiccation stress under conditions of low relative humidity. In epiphytic populations of P. syringae older than 80 h, however, the plate count underestimated the viable-population size by about two- to fourfold, suggesting that up to 75% of the P. syringae population was nonculturable. These nonculturable cells may have entered a starvation-survival state, induced by low nutrient availability in the phyllosphere environment. Epiphytic P. syringae populations undergoing rapid size changes due to growth and death under fluctuating environmental conditions in the field should be accurately enumerated by the plate count method. However, the possible underestimation of viable-population size under some circumstances should be considered in epidemiological studies of phytopathogenic bacteria and when genetically engineered microorganisms in terrestrial ecosystems are monitored.  相似文献   

13.
The direct viable count method, used to detect viable but nonculturable bacteria in aquatic systems, was modified to examine epiphytic populations of Pseudomonas syringae. Viable-population sizes determined from the number of cells that elongated when incubated with yeast extract and nalidixic acid were compared with those determined by the conventional plate count method. The plate count method accurately determined the number of viable cells in epiphytic P. syringae populations in a state of active growth under conditions of high relative humidity. The plate count method also accurately determined the number of viable cells in P. syringae inoculum, or a growing P. syringae population, subject to desiccation stress under conditions of low relative humidity. In epiphytic populations of P. syringae older than 80 h, however, the plate count underestimated the viable-population size by about two- to fourfold, suggesting that up to 75% of the P. syringae population was nonculturable. These nonculturable cells may have entered a starvation-survival state, induced by low nutrient availability in the phyllosphere environment. Epiphytic P. syringae populations undergoing rapid size changes due to growth and death under fluctuating environmental conditions in the field should be accurately enumerated by the plate count method. However, the possible underestimation of viable-population size under some circumstances should be considered in epidemiological studies of phytopathogenic bacteria and when genetically engineered microorganisms in terrestrial ecosystems are monitored.  相似文献   

14.
A bacteriocin produced by Pseudomonas syringae pv. ciccaronei, used at different purification levels and concentrations in culture and in planta, inhibited the multiplication of P. syringae subsp. savastanoi, the causal agent of olive knot disease, and affected the epiphytic survival of the pathogen on the leaves and twigs of treated olive plants. Treatments with bacteriocin from P. syringae pv. ciccaronei inhibited the formation of overgrowths on olive plants caused by P. syringae subsp. savastanoi strains PVBa229 and PVBa304 inoculated on V-shaped slits and on leaf scars at concentrations of 10(5) and 10(8) CFU ml(-1), respectively. In particular, the application of 6,000 arbitrary units (AU) of crude bacteriocin (dialyzed ammonium sulfate precipitate of culture supernatant) ml(-1) at the inoculated V-shaped slits and leaf scars resulted in the formation of knots with weight values reduced by 81 and 51%, respectively, compared to the control, depending on the strains and inoculation method used. Crude bacteriocin (6,000 AU ml(-1)) was also effective in controlling the multiplication of epiphytic populations of the pathogen. In particular, the bacterial populations recovered after 30 days were at least 350 and 20 times lower than the control populations on twigs and on leaves, respectively. These results suggest that bacteriocin from P. syringae pv. ciccaronei can be used effectively to control the survival of the causal agent of olive knot disease and to prevent its multiplication at inoculation sites.  相似文献   

15.
AIMS: To investigate the presence of viable but non-culturable Listeria monocytogenes during survival on parsley leaves under low relative humidity (RH) and to evaluate the ability of L. monocytogenes to recover from VBNC to culturable state under satured humidity. METHODS AND RESULTS: Under low RH (47-69%) on parsley leaves, the initial number of L. monocytogenes populations counted on non selective media (10(9) L. monocytogenes per leaf on TSA) was reduced by 6 log10 scales in 15 days, whereas number of viable L. monocytogenes counted under the microscope was reduced by 3-4 log10 scales, indicating the presence of VBNC cells. This was demonstrated on three L. monocytogenes strains (EGDe, Bug 1995 and LmP60). Changing from low to 100% RH permitted an increase of the culturable counts of L. monocytogenes and this growth was observed only when residual culturable cells were present. Moreover, VBNC L. monocytogenes inoculated on parsley leaves did not become culturable after incubation under 100% RH. CONCLUSIONS: Dry conditions induced VBNC L. monocytogenes on parsley leaves but these VBNC were likely unable to recover culturability after transfer to satured humidity. SIGNIFICANCE AND IMPACT OF STUDY: Enumeration on culture media presumably under-estimates the number of viable L. monocytogenes on fresh produce after exposure to low RH.  相似文献   

16.
The relationship between nutrients leached onto the leaf surface and the colonization of plants by bacteria was studied by measuring both the abundance of simple sugars and the growth of Pseudomonas fluorescens on individual bean leaves. Data obtained in this study indicate that the population size of epiphytic bacteria on plants under environmentally favorable conditions is limited by the abundance of carbon sources on the leaf surface. Sugars were depleted during the course of bacterial colonization of the leaf surface. However, about 20% of readily utilizable sugar, such as glucose, present initially remained on fully colonized leaves. The amounts of sugars on a population of apparently identical individual bean leaves before and after microbial colonization exhibited a similar right-hand-skewed distribution and varied by about 25-fold from leaf to leaf. Total bacterial population sizes on inoculated leaves under conditions favorable for bacterial growth also varied by about 29-fold and exhibited a right-hand-skewed distribution. The amounts of sugars on leaves of different plant species were directly correlated with the maximum bacterial population sizes that could be attained on those species. The capacity of bacteria to deplete leaf surface sugars varied greatly among plant species. Plants capable of supporting high bacterial population sizes were proportionally more depleted of leaf surface nutrients than plants with low epiphytic populations. Even in species with a high epiphytic bacterial population, a substantial amount of sugar remained after bacterial colonization. It is hypothesized that residual sugars on colonized leaves may not be physically accessible to the bacteria due to limitations in wettability and/or diffusion of nutrients across the leaf surface.  相似文献   

17.
In Pseudomonas syringae pv. syringae, lemA is required for brown spot lesion formation on snap bean and for production of syringomycin and extracellular proteases (E. M. Hrabak and D. K. Willis, J. Bacteriol. 174: 3011-3022, 1992; E. M. Hrabak and D. K. Willis, Mol. Plant-Microbe Interact. 6:368-375, 1993; D. K. Willis, E. M. Hrabak, J. J. Rich, T. M. Barta, S. E. Lindow, and N. J. Panopoulos, Mol. Plant-Microbe Interact. 3:149-156, 1990). The lemA mutant NPS3136 (lemA1::Tn5) was previously found to be indistinguishable from its pathogenic parent B728a in its ability to grow when infiltrated into bean leaves of plants maintained under controlled environmental conditions (Willis et al., Mol. Plant-Microbe Interact. 3:149-156, 1990). We compared population sizes of NPS3136 and B728aN (a Nal(supr) clone of wild-type B728a) in two field experiments to determine the effect of inactivation of lemA on the fitness of P. syringae pv. syringae. In one experiment, the bacterial strains were spray inoculated onto the foliage of 25-day-old bean plants. In the other, seeds were inoculated at the time of planting. In both experiments, the strains were inoculated individually and coinoculated in a 1:1 ratio. NPS3136 and B728aN achieved similar large population sizes on germinating seeds. However, in association with leaves, population sizes of NPS3136 were diminished relative to those of B728aN in both experiments. Thus, lemA contributed significantly to the fitness of P. syringae pv. syringae in association with bean leaves but not on germinating seeds under field conditions. When NPS3136 was coinoculated with B728aN, the mutant behaved as it did when inoculated alone. However, population sizes of B728aN in the coinoculation treatment were much lower than those when it was inoculated alone. Inactivation of the lemA gene appeared to have rendered the mutant suppressive to B728aN.  相似文献   

18.
Abstract Isolates of Aureobasidium pullulans which produce antibacterial metabolites were compared with non-antibiotic-producing isolates of Tremella foliacea and Trichosporon beigelii for their ability to inhibit growth of Pseudomonas syringae pv phaseolicola . The bacteria and fungi were co-inoculated on an artificial leaf surface under conditions of low and high water availability. Under conditions of excess moisture, antibiotic production gave no advantage to the Aureobasidium isolates, and all the yeasts were equally antagonistic. Under drier conditions the Aureobasidium isolates reduced the population of P. syringae by 96–99%, a result which was significantly different from that which occurred when the bacteria were co-inoculated with the other yeasts under these conditions. An antibacterial compound, similar to that produced in liquid culture by Aureobasidium , was detected in washings from the artificial leaf surface following growth of this species.  相似文献   

19.
The bacterium Pseudomonas syringae pv syringae B728a (PsyB728a) uses a type III secretion system (T3SS) to inject effector proteins into plant cells, a process that modulates the susceptibility of different plants to infection. Analysis of GREEN FLUORESCENT PROTEIN-expressing PsyB728a after spray inoculation without additives under moderate relative humidity conditions permitted (1) a detailed analysis of this strain's survival and growth pattern on host (Nicotiana benthamiana) and nonhost (tomato [Solanum lycopersicum]) leaf surfaces, (2) an assessment of the role of plant defenses in affecting PsyB728a leaf surface (epiphytic) growth, and (3) the contribution of the T3SS and specific effectors to PsyB728a epiphytic survival and growth. On host leaf surfaces, PsyB728a cells initially persist without growing, and show an increased population only after 48 h, unless plants are pretreated with the defense-inducing chemical benzothiazole. During the persistence period, some PsyB728a cells induce a T3SS reporter, whereas a T3SS-deficient mutant shows reduced survival. By 72 h, rare invasion by PsyB728a to the mesophyll region of host leaves occurs, but endophytic and epiphytic bacterial growths are not correlated. The effectors HopZ3 and HopAA1 delay the onset of epiphytic growth of PsyB728a on N. benthamiana, whereas they promote epiphytic survival/growth on tomato. These effectors localize to distinct sites in plant cells and likely have different mechanisms of action. HopZ3 may enzymatically modify host targets, as it requires residues important for the catalytic activity of other proteins in its family of proteases. Thus, the T3SS, HopAA1, HopZ3, and plant defenses strongly influence epiphytic survival and/or growth of PsyB728a.  相似文献   

20.
Excysted metacercariae of Echinostoma caproni were cultivated on the chick chorioallantoic membrane (CAM) maintained at 38.5 +/- 1 C and a relative humidity of 60-65%. Of 59 6-day-old embryos, each inoculated with 25 metacercariae, 29 (49.2%) were infected 2-12 days postinoculation. The total number of worms recovered from the infected eggs was 163 or 22.5% of the 725 inoculated metacercariae. Eggs contained from 1 to 12 (average 5.6) worms per CAM. Worm length increased rapidly from an average of 0.5 mm at 2 days to about 3.0 mm at 6 days postinoculation. Ovigerous worms first were seen on day 8 PI, but fluke eggs did not develop embryos. Worm development in ovo lagged about 1 day behind that of in vivo worms. One worm maintained for 17 days on 2 successive CAMs reached 6 mm in length, contained about 100 eggs in its uterus, and laid an additional 100 eggs on the CAM surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号