首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research of their potential use in immunotherapy. Accumulating results show the efficacy of this treatment on melanomas which are highly immunogenic. However, its efficacy remains unclear in other tumors. In this study, allogeneic gastric cancer cell–DC hybrids were used to determine the efficacy of this type of immunotherapy in gastric cancer. Fusion cells of DC and allogeneic gastric cancer cells were generated by polyethylene glycol (PEG) and electrofusion. These hybrids were used to induce tumor associated antigen (TAA) specific cytotoxic T lymphocytes (CTLs). The DCs were successfully fused with the allogeneic gastric cancer cells resulting in hybrid cells. These hybrid cells were functional as antigen-presenting cell because they induced allogeneic CD4+ T cells proliferation. CD8+ T cells stimulated by the MKN-45-DC hybrid cells were able to kill MKN-45 when used for immunization. The CTLs killed another gastric cancer cell line, MKN-1, as well as a melanoma cell line, 888mel, suggesting the recognition of a shared tumor antigen. MKN-45 specific CTLs can recognize carcinoembryonic antigen (CEA), indicating that the killing is due to tumor antigens as well as alloantigens. This approach suggests the possible use of allogeneic gastric cancer cell–DC hybrids in DC based immunotherapy for gastric cancer treatment.  相似文献   

2.
Dendritic cell–tumor cell hybrid vaccination for metastatic cancer   总被引:10,自引:0,他引:10  
Dendritic cells are the most potent antigen-presenting cells, and the possibility of their use for cancer vaccination has renewed the interest in this therapeutic modality. Nevertheless, the ideal immunization protocol with these cells has not been described yet. In this paper we describe the preliminary results of a protocol using autologous tumor and allogeneic dendritic hybrid cell vaccination every 6 weeks, for metastatic melanoma and renal cell carcinoma (RCC) patients. Thirty-five patients were enrolled between March 2001 and March 2003. Though all patients included presented with large tumor burdens and progressive diseases, 71% of them experienced stability after vaccination, with durations up to 19 months. Among RCC patients 3/22 (14%) presented objective responses. The median time to progression was 4 months for melanoma and 5.7 months for RCC patients; no significant untoward effects were noted. Furthermore, immune function, as evaluated by cutaneous delayed-type hypersensitivity reactions to recall antigens and by peripheral blood proliferative responses to tumor-specific and nonspecific stimuli, presented a clear tendency to recover in vaccinated patients. These data indicate that dendritic cell–tumor cell hybrid vaccination affects the natural history of advanced cancer and provide support for its study in less advanced patients, who should, more likely, benefit even more from this approach.  相似文献   

3.
Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell–tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c+ expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.  相似文献   

4.
Immunotherapy has been successfully used to treat some human malignancies, principally melanoma and renal cell carcinoma. Genetic-based cancer immunotherapies were proposed which prime T lymphocyte recognition of unique neo-antigens arising from specific mutations. Genetic immunization (polynucleotide vaccination, DNA vaccines) is a process whereby gene therapy methods are used to create vaccines and immunotherapies. Recent findings indicate that genetic immunization works indirectly via a bone marrow derived cell, probably a type of dendritic antigen presenting cell (APC). Direct targeting of genetic vaccines to these cells may provide an efficient method for stimulating cellular and humoral immune responses to infectious agents and tumor antigens. Initial studies have provided monocytic-derived dendritic cell (DC) isolation and culture techniques, simple methods for delivering genes into these cells, and have also uncovered potential obstacles to effective cancer immunotherapy which may restrict the utility of this paradigm to a subset of patients.  相似文献   

5.
Active immunotherapy of cancer requires the availability of a source of tumor antigens. To date, no such antigen associated with lung cancer has been identified. We have therefore investigated the ability of dendritic cells (DC) to capture whole irradiated human lung tumor cells and to present a defined surrogate antigen derived from the ingested tumor cells. We also describe an in vitro system using a modified human adenocarcinoma cell line (A549-M1) that expresses the well-characterized, immunogenic influenza M1 matrix protein as a surrogate tumor antigen. Peripheral blood monocyte-derived DC, when co-cultured with sub-lethally irradiated A549 cells or primary lung tumor cells derived from surgical resection of non-small cell carcinoma (NSCLC), efficiently ingested the tumor cells as determined by flow cytometry analysis and confocal microscopic examination. More importantly, DC loaded with irradiated A549-M1 cells efficiently processed and presented tumor cell-derived M1 antigen to T cells and elicited antigen-specific immune responses that included IFNgamma release from an M1-specific T-cell line, expansion of M1 peptide-specific Vbeta17+ and CD8+ peripheral T cells and generation of M1-specific cytotoxic T lymphocytes (CTL). We also compared DC loaded with irradiated tumor cells to those loaded with tumor cell lysate or killed tumor cells and found that irradiated lung tumor cells as a source of tumor antigen for DC loading is superior to tumor cell lysate or killed tumor cells in efficient induction of antigen-specific T-cell responses. Our results demonstrate the feasibility of using lung tumor cell-loaded DC to induce immune responses against lung cancer-associated antigens and support ongoing efforts to develop a DC-based lung cancer vaccine.  相似文献   

6.
Melanoma incidence increases and conventional antitumor therapies are often ineffective, encouraging the design of novel therapies. Several lines of evidence support the notion of an immunological control of melanoma growth. Based on this information, active immunotherapy (vaccination) and adoptive immunotherapy trials (T cell therapy) were conducted in metastatic melanoma patients. The proof of principle of effective immunotherapy was brought up by pionnering trials using tumor infiltrated lymphocytes in lymphodepleted recipients or anti-CTLA4 Ab leading to tumor eradication but also autoimmune diseases. With the identification and characterization of tumor antigens recognized by cytotoxic T lymphocytes, the utilization of tumor rejection antigens along with adjuvants become available as tumor vaccines. The last five years have witnessed the emergence of dendritic cell based-vaccines that were efficient in priming and/or boosting T cell responses in normal volunteers and patients. This review highlights preclinical bases of cancer vaccines, their clinical development and discusses their limits. Correlations between immunomonitoring and tumor regressions await larger trials.  相似文献   

7.
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.  相似文献   

8.
Although new treatment options for patients with advanced renal cell cancer (RCC) have been developed within recent years, vaccination is still a promising emerging treatment option. An increasing number of tumor-associated antigens (TAA) available for RCC are currently used and analyzed for their efficacy for antigen-specific vaccine strategies. Recently, antigen-specific vaccination with dendritic cells in patients with metastatic RCC was shown to induce cytotoxic T cell response associated with objective clinical responses in some of the patients. Furthermore, current studies focus on the development of more effective vaccine regimes, such as the application of polyvalent, HLA-independent RNA coding for multiple TAA and adjuvants. First results demonstrate promising clinical and immunological efficacy. The efficacy of antigen-specific vaccination might be improved by a combination of tyrosine kinase inhibitors, since sunitinib was shown to promote T cell induction following vaccination in a mouse model and elimination of regulatory T cells. “Immunotherapy: from basic research to clinical applications” symposium of the Collaborative Research Center (SFB) 685 held in Tübingen, Germany, 6–7 March 2008.  相似文献   

9.
Metastatic renal cell carcinoma, inherently resistant to conventional treatments, is considered immunogenic. Indeed, partial responses are obtained after treatment with cytokines such as IL-2 or IFN-alpha, suggesting that the immune system may control the tumor growth. In this study, we have investigated the ability of the main subset of peripheral gammadelta lymphocytes, the Vgamma9Vdelta2-TCR T lymphocytes, to induce an effective cytotoxic response against autologous primary renal cell carcinoma lines. These gammadelta T cells were expanded ex vivo using a Vgamma9Vdelta2 agonist, a synthetic phosphoantigen called Phosphostim. From 11 of 15 patients, the peripheral Vgamma9Vdelta2 T cells were amplified in vitro by stimulating PBMCs with IL-2 and Phosphostim molecule. These expanded Vgamma9Vdelta2 T cells express activation markers and exhibit an effector/memory phenotype. They display a selective lytic potential toward autologous primary renal tumor cells and not against renal NC. The lytic activity involves the perforin-granzyme pathway and is mainly TCR and NKG2D receptor dependent. Furthermore, an increased expression of MHC class I-related molecule A or B proteins, known ligands of NKG2D, are detected on primary renal tumor cells. Interestingly, from 2 of the 11 positive cultures in response to Phosphostim, expanded-Vgamma9Vdelta2 T cells present an expression of killer cell Ig-like receptors, suggesting their prior recruitment in vivo. Unexpectedly, on serial frozen sections from three tumors, we observe a gammadelta lymphocyte infiltrate that was mainly composed of Vgamma9Vdelta2 T cells. These results outline that Vgamma9Vdelta2-TCR effectors may represent a promising approach for the treatment of metastatic renal cell carcinoma.  相似文献   

10.
Due to their central role in controlling immunity, dendritic cells are logical targets for priming naive cytotoxic T lymphocytes against tumour cells. In a strictly autologous system, we fused dendritic cells with melanoma cells, both of which were derived from patients with metastatic malignant melanoma. Hybridomas were positive for major histocompatibility complex (MHC) class II, CD40, CD54, CD83, CD86, and the pro-inflammatory cytokine interleukin-12. Autologous T lymphocytes were co-incubated with hybridomas. After 6 days, in-vitro-primed T lymphocytes revealed a strong proliferation activity and released Th-1-associated, but not Th-2-associated, cytokines. Furthermore they showed effective anti-melanoma activity, resulting in death of 70 +/- 9% of autologous melanoma cells. After depletion of CD4+ cells from the mixed population of primed T lymphocytes, the remaining CD8+ cells were able to kill 63+/-8% of autologous melanoma cells. Following depletion of CD8+ cells, however, the cytotoxic capacity of the remaining T lymphocytes caused death in only 32+/-6% of autologous melanoma cells. Blocking of MHC class I, but not class II, molecules on hybridomas impaired T cell proliferation, secretion of Th-1-associated cytokines, as well as the cytotoxic activity of primed T cells. These findings strongly suggest that hybridomas deliver melanoma-associated antigens via MHC class I molecules to T lymphocytes, resulting in the generation of CD8+ cytotoxic T lymphocytes with effective anti-melanoma activity in vitro. The data may serve as a basis for the use of hybridomas in the immunotherapy of malignant melanoma in vivo.  相似文献   

11.
BACKGROUND: Hybrids obtained by fusion between tumour cells (TC) and dendritic cells (DC) have been proposed as anti-tumour vaccines because of their potential to combine the expression of tumour-associated antigens with efficient antigen presentation. The classical methods used for fusion, polyethylene glycol (PEG) and electrofusion, are cytotoxic and generate cell debris that can be taken up by DC rendering the identification of true hybrids difficult. METHODS: We have established a stable cell line expressing a viral fusogenic membrane glycoprotein (FMG) that is not itself susceptible to fusion. This cell line has been used to generate hybrids and to evaluate the relevance of tools used for hybrid detection. RESULTS: This FMG-expressing cell line promotes fusion between autologous or allogeneic TC and DC in any combination, generating 'tri-parental hybrids'. At least 20% of TC are found to be integrated into hybrids. CONCLUSIONS: It is speculated that this tri-parental hybrid approach offers new possibilities to further modulate the anti-tumour effect of the DC/TC hybrids since it allows the expression of relevant immunostimulatory molecules by appropriate engineering of the fusogenic cell line.  相似文献   

12.
BCR-ABL为慢性髓细胞白血病特异胞质抗原,为良好的免疫治疗靶标.该研究选择BCR-ABL融合位点的两段抗原肽SSKALQRPV(SS)、GFKQSSKAL(GF)为靶点,与胞质转导肽融合表达,负载小鼠骨髓源性树突状细胞.在胞质转导肽介导下,SS、GF短肽进入树突状细胞并定位于内质网,具备了被树突状细胞识别为内源性抗...  相似文献   

13.
The polypeptide component of telomerase (TERT) is an attractive candidate for a broadly expressed tumor rejection antigen because telomerase is silent in normal tissues but is reactivated in more than 85% of cancers. Here we show that immunization against TERT induces immunity against tumors of unrelated origin. Immunization of mice with TERT RNA-transfected dendritic cells (DC) stimulated cytotoxic T lymphocytes (CTL), which lysed melanoma and thymoma tumor cells and inhibited the growth of three unrelated tumors in mice of distinct genetic backgrounds. TERT RNA-transfected human DC stimulated TERT-specific CTL in vitro that lysed human tumor cells, including Epstein Barr virus (EBV)-transformed B cells as well as autologous tumor targets from patients with renal and prostate cancer. Tumor RNA-transfected DC were used as surrogate targets in the CTL assays, obviating the difficulties in obtaining tumor cells from cancer patients. In one instance, where a tumor cell line was successfully established in culture from a patient with renal cancer, the patient's tumor cells were efficiently lysed by the CTL. Immunization with tumor RNA was generally more effective than immunization with TERT RNA, suggesting that an optimal immunization protocol may have to include TERT as well as additional tumor antigens.  相似文献   

14.
Malignant glioma of the CNS is a tumor with a very bad prognosis. Development of adjuvant immunotherapy is hampered by interindividual and intratumoral antigenic heterogeneity of gliomas. To evaluate feasibility of tumor vaccination with (autologous) tumor cells, we have studied uptake of tumor cell lysates by dendritic cells (DCs), and the T-cell stimulatory capacity of the loaded DCs. DCs are professional antigen-presenting cells, which have already been used as natural adjuvants to initiate immune responses in human cancer. An efficacious uptake of tumor cell proteins, followed by processing and presentation of tumor-associated antigens by the DCs, is indeed one of the prerequisites for a potent and specific stimulation of T lymphocytes. Human monocytes were differentiated in vitro to immature DCs, and these were loaded with FITC-labeled tumor cell proteins. Uptake of the tumor cell proteins and presentation of antigens in the context of both MHC class I and II could be demonstrated using FACS analysis and confocal microscopy. After further maturation, the loaded DCs had the capacity to induce specific T-cell cytotoxic activity against tumor cells. We conclude that DCs loaded with crude tumor lysate are efficacious antigen-presenting cells able to initiate a T-cell response against malignant glioma tumor cells.  相似文献   

15.
We have constructed somatic cell hybrids between the murine T cell line BW5147 and cells from patients suffering from T cell acute lymphoblastic leukemia. The obtained hybrid clones were analyzed for expression of human T cell antigens and presence of human chromosomes. T cell hybrids derived from fusion between the BW5147 cell line and bone marrow cells from a patient with pre-T acute lymphoblastic leukemia (TdT+/HLA-DR+/Tp41+/T11+/T1-/T6-/T4-/T8-/T3-) appeared to express the human T cell antigen Tp41, which can be recognized by the monoclonal antibodies 3A1 and WT1. Although this panel of hybrid cells contained all human chromosomes, no other T cell antigens were expressed. Fusion of the BW5147 cell line with peripheral blood cells from a patient with a more mature T cell acute lymphoblastic leukemia (TdT+/HLA-DR+/Tp41+/T11+/T1+/T6-/T4+/T8+/T3-) resulted in a panel of hybrid clones that expressed not only the Tp41 antigen, but also the human T cell antigens T1 and T4; two hybrids even expressed the T3 antigen. This panel of hybrids also contained the whole human genome. The two panels of human-mouse T cell hybrids allowed us to assign the genes coding for the human T cell antigens Tp41, T1, and T4 to human chromosomes 17, 11, and 12, respectively. Furthermore, these data support our previous suggestion that the expression of human lymphoid differentiation antigens in human-mouse lymphoid hybrids is influenced by the differentiation stage of the fusion partners.  相似文献   

16.
Previous reports have described antigens that are recognized on human melanoma cells by autologous cytolytic T lymphocytes (CTL). The genes coding for a number of these antigens have been identified. Here we report the cloning of a gene that codes for an antigen recognized by autologous CTL on a human renal carcinoma cell line. This antigen is presented byHLA-B7 and is encoded by a new gene that we have namedRAGE1. No expression ofRAGE1 was found in normal tissues other than retina. RAGE1 expression was found in only one of 57 renal cell carcinoma samples, and also in some sarcomas, infiltrating bladder carcinomas, and melanomas. This represents the first identification of an antigen recognized by autologous CTL on a renal tumor.  相似文献   

17.
Several potential vaccines have been evaluated for the treatment of patients with renal cell carcinoma (RCC). They include dendritic cells pulsed with tumor lysate, a dendritic cell-tumor cell hybrid, irradiated tumor cells admixed with adjuvants, and a heat shock protein-peptide complex. Promising results have been obtained in several early clinical trials, but issues of tumor immunosuppression and lack of identified tumor-associated antigens must be addressed before vaccine therapy can be applied successfully in advanced RCC. In this patient population, vaccine therapy will likely be required in combination with other forms of immunotherapy, such as interleukin-2 and thalidomide. In contrast, vaccine therapy alone may be sufficient for high-risk patients in the adjuvant setting.  相似文献   

18.
The ability of cultured, antigen-loaded dendritic cells (DCs) to induce antigen-specific T cell immunity in vivo has previously been demonstrated and confirmed. Immune monitoring naturally focuses on immunity against vaccine antigens and may thus ignore other effects of DC vaccination. Here we therefore focused on antigen-independent responses induced by DC vaccination of renal cell carcinoma patients. In addition to the anticipated response against the vaccine antigen KLH, vaccination with CD83+ monocyte-derived DCs resulted in a strong increase in the ex vivo proliferative and cytokine responses of PBMCs stimulated with LPS or BCG. In addition, LPS strongly enhanced the KLH-induced proliferative and cytokine response of PBMCs. Moreover, proliferative and cytokine responses of PBMCs stimulated with the homeostatic cytokines IL-7 and IL-15 were also clearly enhanced after DC vaccination. In contrast to LPS induced proliferation, which is well known to depend on monocytes, IL-7 induced proliferation was substantially enhanced after monocyte depletion indicating that monocytes limit IL-7 induced lymphocyte expansion. Our data indicate that DC vaccination leads to an increase in the ex vivo responsiveness of patient PBMCs consistent with a DC vaccination induced enhancement of T cell memory. Our findings also suggest that incorporation of bacterial components and homeostatic cytokines into immunotherapy protocols may be useful in order to enhance the efficacy of DC vaccination and that monocytes may limit DC vaccination induced immunity. Supported by a grant to Martin Thurnher from the kompetenzzentrum medizin tirol (kmt), a center of excellence.  相似文献   

19.
In this study we have presented in vitro data and results of a preliminary clinical trial using dendritic cells (DC) in patients with progressive metastatic renal cell carcinoma. DC precursor cells were obtained from peripheral blood mononuclear cells (PBMC). DC were pulsed with autologous tumor cell lysate if available. In total, 15 patients were treated with a median of 3.95 x 10(6) DC administered and ultrasound-guided into a lymph node or into adjacent tissue. Seven patients remained with progressive disease (PD), 7 patients showed stable disease (SD), and one patient displayed a partial response (PR). Most interestingly, the patient who was treated with the highest number of DC (14.4 x 10(6) DC/vaccine) displayed a PR. Delayed-type hypersensitivity (DTH) reaction using autologous tumor lysate was positive in 3 out of 13 patients, including the patient with PR. Two out of 3 patients receiving additional treatment with keyhole limpet hemocyanin (KLH) showed reactivity to KLH after vaccination. CD3+CD4+ and CD3+CD28+ cells as well as the proliferation rate of peripheral blood lymphocytes (PBL) increased significantly in the blood of patients during therapy. In conclusion, our observations confirm the capability of tumor-lysate pulsed autologous DC vaccines to stimulate an immune response in patients with metastatic renal cell carcinoma even in the presence of a large tumor burden. The lack of adverse effects together with immunologic effects support further investigation of this novel therapeutic approach. Further studies are necessary to demonstrate clinical effectiveness in cancer patients, in particular in patients with less advanced disease.  相似文献   

20.
To elicit a therapeutic antitumor immune response, dendritic cells (DCs) have been employed as a cellular adjuvant. Among various DC-based approaches, fusion of DCs and tumor cells potentially confers not only DC functionality, but also a continuous source of unaltered tumor antigens. We have recently demonstrated successful generation of fusion hybrids by a large-scale electrofusion technique. The immunogenicity and therapeutic potential of fusion hybrids were further analyzed in a model system of a murine melanoma cell line expressing beta-galactosidase (beta-gal) as a surrogate tumor antigen. A single vaccination with fusion hybrids plus IL-12 induced a therapeutic immune response against 3-day established pulmonary metastases. This immunotherapy was beta-gal specific and involved both CD4 and CD8 T cells. In vitro, fusion hybrids stimulated specific IFN-gamma secretion from both CD4 and CD8 immune T cells. They also nonspecifically induced IL-10 secretion from CD4 but not CD8 T cells. Compared to other DC loadings, our results demonstrate the superior immunogenicity of fusion. The current technique of electrofusion is adequately developed for clinical use in cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号