首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The parallel polarization electron paramagnetic resonance (EPR) method has been applied to investigate manganese EPR signals of native S1 and S3 states of the water oxidizing complex (WOC) in photosystem (PS) II. The EPR signals in both states were assigned to thermally excited states with S=1, from which zero-field interaction parameters D and E were derived. Three kinds of signals, the doublet signal, the singlet-like signal and g=11-15 signal, were detected in Ca2+-depleted PS II. The g=11-15 signal was observed by parallel and perpendicular modes and assigned to a higher oxidation state beyond S2 in Ca2+-depleted PS II. The singlet-like signal was associated with the g=11-15 signal but not with the Y(Z) (the tyrosine residue 161 of the D1 polypeptide in PS II) radical. The doublet signal was associated with the Y(Z) radical as proved by pulsed electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. The electron transfer mechanism relevant to the role of Y(Z) radical was discussed.  相似文献   

2.
Photosynthetic O(2) production from water is catalyzed by a cluster of four manganese ions and a tyrosine residue that comprise the redox-active components of the water-oxidizing complex (WOC) of photosystem II (PSII) in all known oxygenic phototrophs. Knowledge of the oxidation states is indispensable for understanding the fundamental principles of catalysis by PSII and the catalytic mechanism of the WOC. Previous spectroscopic studies and redox titrations predicted the net oxidation state of the S(0) state to be (Mn(III))(3)Mn(IV). We have refined a previously developed photoassembly procedure that directly determines the number of oxidizing equivalents needed to assemble the Mn(4)Ca core of WOC during photoassembly, starting from free Mn(II) and the Mn-depleted apo-WOC complex. This experiment entails counting the number of light flashes required to produce the first O(2) molecules during photoassembly. Unlike spectroscopic methods, this process does not require reference to synthetic model complexes. We find the number of photoassembly intermediates required to reach the lowest oxidation state of the WOC, S(0), to be three, indicating a net oxidation state three equivalents above four Mn(II), formally (Mn(III))(3)Mn(II), whereas the O(2) releasing state, S(4), corresponds formally to (Mn(IV))(3)Mn(III). The results from this study have major implications for proposed mechanisms of photosynthetic water oxidation.  相似文献   

3.
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.  相似文献   

4.
M Sivaraja  J Tso  G C Dismukes 《Biochemistry》1989,28(24):9459-9464
EPR studies have revealed that removal of calcium using citric acid from the site in spinach photosystem II which is coupled to the photosynthetic O2-evolving process produces a structural change in the manganese cluster responsible for water oxidation. If done in the dark, this yields a modified S1' oxidation state which can be photooxidized above 250 K to form a structurally altered S2' state, as seen by formation of a "modified" multiline EPR signal. Compared to the "normal" S2 state, this new S2'-state EPR signal has more lines (at least 25) and 25% narrower 55Mn hyperfine splittings, indicative of disruption of the ligands to manganese. The calcium-depleted S2' oxidation state is greatly stabilized compared to the native S2 oxidation state, as seen by a large increase in the lifetime of the S2' EPR signal. Calcium reconstitution results in the reduction of the oxidized tyrosine residue 161YD+ (Em approximately 0.7-0.8 V, NHE) within the reaction center D1 protein in both the S1' and S2' states, as monitored by its EPR signal intensity. We attribute this to reduction by Mn. Thus a possible structural role which calcium plays is to bring YD+ into redox equilibrium with the Mn cluster. Photooxidation of S2' above 250 K produces a higher S state (S3 or S4) having a new EPR signal at g = 2.004 +/- 0.003 and a symmetric line width of 163 +/- 3 G, suggestive of oxidation of an organic donor, possibly an amino acid, in magnetic contact with the Mn cluster. This EPR signal forms in a stoichiometry of 1-2 relative to YD+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
The active site for water oxidation in photosystem II (PSII) consists of a Mn4Ca cluster close to a redox-active tyrosine residue (TyrZ). The enzyme cycles through five sequential oxidation states (S0 to S4) in the water oxidation process. Earlier electron paramagnetic resonance (EPR) work showed that metalloradical states, probably arising from the Mn4 cluster interacting with TyrZ., can be trapped by illumination of the S0, S1 and S2 states at cryogenic temperatures. The EPR signals reported were attributed to S0TyrZ., S1TyrZ. and S2TyrZ., respectively. The equivalent states were examined here by EPR in PSII isolated from Thermosynechococcus elongatus with either Sr or Ca associated with the Mn4 cluster. In order to avoid spectral contributions from the second tyrosyl radical, TyrD., PSII was used in which Tyr160 of D2 was replaced by phenylalanine. We report that the metalloradical signals attributed to TyrZ. interacting with the Mn cluster in S0, S1, S2 and also probably the S3 states are all affected by the presence of Sr. Ca/Sr exchange also affects the non-haem iron which is situated approximately 44 A units away from the Ca site. This could relate to the earlier reported modulation of the potential of QA by the occupancy of the Ca site. It is also shown that in the S3 state both visible and near-infrared light are able to induce a similar Mn photochemistry.  相似文献   

7.
The Mn4Ca complex that is involved in water oxidation in PSII is affected by near-infrared (NIR) light in certain redox states and these phenomena can be monitored by electron paramagnetic resonance (EPR) at low temperature. Here we report the action spectra of the NIR effects in the S2 and S3 states in PSII from plants and the thermophilic cyanobacterium Thermosynechococcus elongatus. The action spectra obtained are very similar in both S states, indicating the presence of the same photoactive form of the Mn4Ca complex in both states. Since the chemical nature of the photoactive species is not known, an unequivocal interpretation of this result cannot be made; however, it appears to be more easily reconciled with the view that the redox state of the Mn4Ca cluster does not change from the S2 to the S3 transition, at least in those centers sensitive to NIR light. The temperature dependence of the NIR effect and the action spectra for S2 indicate the presence of structural heterogeneity in the Mn4Ca cluster.  相似文献   

8.
Lee CI  Lakshmi KV  Brudvig GW 《Biochemistry》2007,46(11):3211-3223
Photosynthetic oxygen evolution in photosystem II (PSII) takes place in the oxygen-evolving complex (OEC) that is comprised of a tetranuclear manganese cluster (Mn4), a redox-active tyrosine residue (YZ), and Ca2+ and Cl- cofactors. The OEC is successively oxidized by the absorption of 4 quanta of light that results in the oxidation of water and the release of O2. Ca2+ is an essential cofactor in the water-oxidation reaction, as its depletion causes the loss of the oxygen-evolution activity in PSII. In recent X-ray crystal structures, Ca2+ has been revealed to be associated with the Mn4 cluster of PSII. Although several mechanisms have been proposed for the water-oxidation reaction of PSII, the role of Ca2+ in oxygen evolution remains unclear. In this study, we probe the role of Ca2+ in oxygen evolution by monitoring the S1 to S2 state transition in PSII membranes and PSII core complexes upon inhibition of oxygen evolution by Dy3+, Cu2+, and Cd2+ ions. By using a cation-exchange procedure in which Ca2+ is not removed prior to addition of the studied cations, we achieve a high degree of reversible inhibition of PSII membranes and PSII core complexes by Dy3+, Cu2+, and Cd2+ ions. EPR spectroscopy is used to quantitate the number of bound Dy3+ and Cu2+ ions per PSII center and to determine the proximity of Dy3+ to other paramagnetic centers in PSII. We observe, for the first time, the S2 state multiline electron paramagnetic resonance (EPR) signal in Dy3+- and Cd2+-inhibited PSII and conclude that the Ca2+ cofactor is not specifically required for the S1 to S2 state transition of PSII. This observation provides direct support for the proposal that Ca2+ plays a structural role in the early S-state transitions, which can be fulfilled by other cations of similar ionic radius, and that the functional role of Ca2+ to activate water in the O-O bond-forming reaction that occurs in the final step of the S state cycle can only be fulfilled by Ca2+ and Sr2+, which have similar Lewis acidities.  相似文献   

9.
Structural and electronic changes (oxidation states) of the Mn(4)Ca complex of photosystem II (PSII) in the water oxidation cycle are of prime interest. For all four transitions between semistable S-states (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), and S(3),(4) --> S(0)), oxidation state and structural changes of the Mn complex were investigated by X-ray absorption spectroscopy (XAS) not only at 20 K but also at room temperature (RT) where water oxidation is functional. Three distinct experimental approaches were used: (1) illumination-freeze approach (XAS at 20 K), (2) flash-and-rapid-scan approach (RT), and (3) a novel time scan/sampling-XAS method (RT) facilitating particularly direct monitoring of the spectral changes in the S-state cycle. The rate of X-ray photoreduction was quantitatively assessed, and it was thus verified that the Mn ions remained in their initial oxidation state throughout the data collection period (>90%, at 20 K and at RT, for all S-states). Analysis of the complete XANES and EXAFS data sets (20 K and RT data, S(0)-S(3), XANES and EXAFS) obtained by the three approaches leads to the following conclusions. (i) In all S-states, the gross structural and electronic features of the Mn complex are similar at 20 K and room temperature. There are no indications for significant temperature-dependent variations in structure, protonation state, or charge localization. (ii) Mn-centered oxidation likely occurs on each of the three S-state transitions, leading to the S(3) state. (iii) Significant structural changes are coupled to the S(0) --> S(1) and the S(2) --> S(3) transitions which are identified as changes in the Mn-Mn bridging mode. We propose that in the S(2) --> S(3) transition a third Mn-(mu-O)(2)-Mn unit is formed, whereas the S(0) --> S(1) transition involves deprotonation of a mu-hydroxo bridge. In light of these results, the mechanism of accumulation of four oxidation equivalents by the Mn complex and possible implications for formation of the O-O bond are considered.  相似文献   

10.
In the recent X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is assigned as a ligand of the O2-evolving Mn4Ca cluster. In this communication, a preliminary characterization of the CP43-Glu354Gln mutant of the cyanobacterium Synechocystis sp. PCC 6803 is presented. The steady-state rate of O2 evolution in the mutant cells is only approximately 20% compared with the wild-type, but the kinetics of O2 release are essentially unchanged and the O2-flash yields show normal period-four oscillations, albeit with lower overall intensity. Purified PSII particles exhibit an essentially normal S2 state multiline electron paramagnetic resonance (EPR) signal, but exhibit a substantially altered S2-minus-S1 Fourier transform infrared (FTIR) difference spectrum. The intensities of the mutant EPR and FTIR difference spectra (above 75% compared with wild-type) are much greater than the O2 signals and suggest that CP43-Glu354Gln PSII reaction centres are heterogeneous, with a minority fraction able to evolve O2 with normal O2 release kinetics and a majority fraction unable to advance beyond the S2 or S3 states. The S2-minus-S1 FTIR difference spectrum of CP43-Glu354Gln PSII particles is altered in both the symmetric and asymmetric carboxylate stretching regions, implying either that CP43-Glu354 is exquisitely sensitive to the increased charge that develops on the Mn4Ca cluster during the S1-->S2 transition or that the CP43-Glu354Gln mutation changes the distribution of Mn(III) and Mn(IV) oxidation states within the Mn4Ca cluster in the S1 and/or S2 states.  相似文献   

11.
Using X-ray absorption spectroscopy (XAS), relevant information on structure and oxidation state of the water-oxidizing Mn complex of photosystem II has been obtained for all four semi-stable intermediate states of its catalytic cycle. We summarize our recent XAS results and discuss their mechanistic implications. The following aspects are covered: (a) information content of X-ray spectra (pre-edge feature, edge position, extended X-ray absorption fine-structure (EXAFS), dichroism in the EXAFS of partially oriented samples); (b) S(1)-state structure; (c) X-ray edge results on oxidation state changes; (d) EXAFS results on structural changes during the S-state cycle; (e) a structural model for the Mn complex in its S(3)-state; (f) XAS-based working model for the S(2)-S(3) transition; (g) XAS-based working model for the S(0)-S(1) transition; (h) potential role of hydrogen atom abstraction by the Mn complex. Finally, we present a specific hypothesis on the mechanism of dioxygen formation during the S(3)-(S(4))-S(0) transition. According to this hypothesis, water oxidation is facilitated by manganese reduction that is coupled to proton transfer from a substrate water to bridging oxides.  相似文献   

12.
We have employed electron-nuclear double resonance (ENDOR) spectroscopy to study the 57Fe hyperfine interactions in the bridged-siroheme [4Fe-4S] cluster that forms the catalytically active center of the two-electron-reduced hemoprotein subunit of Escherichia coli NADPH-sulfite reductase (SiR2-). Previous electron paramagnetic resonance (EPR) and M?ssbauer studies have shown that this enzyme oxidation state can exist in three distinct spectroscopic forms: (1) a "g = 2.29" EPR species that predominates in unligated SiR2-, in which the siroheme Fe2+ is believed to be in an S = 1 state; (2) a "g = 4.88" type of EPR species that predominates in SiR2- in the presence of small amounts of guanidinium sulfate, in which the siroheme Fe2+ is in an S = 2 state; and (3) a classical "g = 1.94" type of EPR species that is seen in SiR2- ligated with CO, in which the siroheme Fe2+ is in an S = 0 state. In all three species, the cluster is in the [4Fe-4S]1+ state, and two distinct types of Fe site are seen in M?ssbauer spectroscopy. ENDOR studies confirm the M?ssbauer assignments for the cluster 57Fe in the g = 1.94 state, with A values of 37, 37, and 32 MHz for site I and ca. 19 MHz for site II. The hyperfine interactions are not too different on the g = 2.29 state, with site I Fe showing more anisotropic A values of 32, 24, and 20 MHz (site II was not detected).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
《BBA》2001,1503(1-2):112-122
The parallel polarization electron paramagnetic resonance (EPR) method has been applied to investigate manganese EPR signals of native S1 and S3 states of the water oxidizing complex (WOC) in photosystem (PS) II. The EPR signals in both states were assigned to thermally excited states with S=1, from which zero-field interaction parameters D and E were derived. Three kinds of signals, the doublet signal, the singlet-like signal and g=11–15 signal, were detected in Ca2+-depleted PS II. The g=11–15 signal was observed by parallel and perpendicular modes and assigned to a higher oxidation state beyond S2 in Ca2+-depleted PS II. The singlet-like signal was associated with the g=11–15 signal but not with the YZ (the tyrosine residue 161 of the D1 polypeptide in PS II) radical. The doublet signal was associated with the YZ radical as proved by pulsed electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. The electron transfer mechanism relevant to the role of YZ radical was discussed.  相似文献   

14.
We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain L-edge-like spectra (2p to 3d, ca. 650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained extended X-ray absorption fine structure data from the S(0) and S(3) states and observed heterogeneity in the Mn-Mn distances leading us to conclude that there may be three rather than two di-mu-oxo-bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca and Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn-Ca cluster. The possibility of three di-mu-oxo-bridged Mn-Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results.  相似文献   

15.
The effect of extraction of weakly bound Ca2+ by low-pH treatment on the O2-evolving apparatus was studied by use of low-temperature electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy. In low-pH-treated PSII membranes, an S2 EPR multiline signal with modified line shape was induced by illumination at 0 degrees C, but its signal amplitude decreased upon lowering the excitation temperature with concomitant oxidation of cytochrome (cyt) b-559 in place of Mn. The half-inhibition temperature for formation of the modified multiline signal was found at -33 degrees C, which was much higher than that for formation of the normal S2 state in untreated control membranes. Signal IIf was normally induced down to -30 degrees C, but its dependence on excitation temperature was different from that for modified S2. This was interpreted as indicating that the low-temperature blockage of modified S2 formation is due to the incapability of electron abstraction from the Mn cluster. The Mn K-edge of X-ray absorption near-edge structure (XANES) spectrum shifted to lower energy by 0.8 eV after low-pH treatment, but the shift was reversed by addition of Ca2+. Upon illumination at 0 degrees C of treated membranes, the K-edge energy was up-shifted by 0.8 eV, but was not upon illumination at 210 K. These results were interpreted as indicating that extraction of weakly bound Ca2+ by low-pH treatment gives rise to structural and functional modulations of the Mn cluster.  相似文献   

16.
The chlorophyll-binding protein CP43 is an inner subunit of the Photosystem II (PSII) reaction center core complex of all oxygenic photoautotrophs. X-Ray structural evidence places the guanidinium cation of the conserved arginine 357 residue of CP43 within a few Angstroms to the Mn(4)Ca cluster of the water-oxidizing complex (WOC) and has been implicated as a possible carbonate binding site. To test the hypothesis, the serine mutant, CP43-R357S, from Synechocystis PCC 6803 was investigated by PSII variable fluorescence (F(v)/F(m)) and simultaneous flash O(2) yield measurements in cells and thylakoid membranes. The R357S mutant assembles PSII-WOC centers, but is unable to grow photoautotrophically. Reconstitution of O(2) evolution by photoactivation and the occurrence of period-four oscillations of F(v)/F(m) establishes that the R357S mutant contains an assembled Mn(4)Ca cluster, but turnover is impaired as seen by an 11-fold larger Kok double miss parameter and faster decay of upper S states. Using pulsed light to avoid photoinactivation, wild-type cells and thylakoid membranes exhibit a 2-4-fold loss in O(2) evolution rate upon partial bicarbonate depletion under multiple turnover conditions, while the R357S mutant is unaffected by bicarbonate. Arginine R357 appears to function in binding a (bi)carbonate ion essential to normal catalytic turnover of the WOC. The quantum yield of electron donation from the WOC into PSII increases with decreasing turnover rate in R357S mutant cells and involves an aborted two-flash pathway that is distinct from the classical four-flash pattern. We speculate that an altered photochemical mechanism for O(2) production occurs via formation of hydrogen peroxide, by analogy to other treatments that retard the kinetics of proton release into the lumen.  相似文献   

17.
G M Ananyev  A Murphy  Y Abe  G C Dismukes 《Biochemistry》1999,38(22):7200-7209
The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ > Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ > Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.  相似文献   

18.
The bidirectional hydrogenase from Clostridium pasteurianum W5 is an iron-sulfur protein containing approximately 12 Fe atoms and 12 labile sulfides. We have studied oxidized samples of the enzyme with M?ssbauer and electron nuclear double resonance (ENDOR) spectroscopy to elucidate the nature of the center that gives rise to the EPR signal with principal g-values at 2.10, 2.04, and 2.01. The g = 2.10 center exhibits two well-resolved 57Fe ENDOR resonances. One is isotropic with A1 = 9.5 MHz; the other is nearly isotropic with A2 = 17 MHz. These magnetic hyperfine coupling constants are substantially (approximately 50%) smaller than those observed for [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters. The M?ssbauer and ENDOR data, taken together, suggest that the g = 2.10 center contains at least two but not more than four iron atoms. Comparison of our data with recent results reported for Escherichia coli sulfite reductase and the ferricyanide-treated [4Fe-4S] cluster from Azotobacter vinelandii ferredoxin I suggests that the g = 2.10 center may possibly be formed, by oxidation, from a structure with a [4Fe-4S] core. The M?ssbauer spectra give evidence that at least 8 of the 12 Fe atoms of oxidized hydrogenase are organized in two ferredoxin-type [4Fe-4S] clusters, supporting conclusions derived previously from EPR studies of the reduced enzyme.  相似文献   

19.
A detailed analysis of the EPR signatures at X-band and Q-band of an enzyme (SoxB) involved in sulfur oxidation from Paracoccus pantotrophus is presented. EPR spectra are attributed to an exchange-coupled dimanganese Mn2(II,II) complex. An antiferromagnetic exchange interaction of J=?7.0 (±1) cm?1 (H=?2JS 1 S 2 ) is evidenced by a careful examination of the temperature dependence of the EPR spectra. The spin Hamiltonian parameters for a total spin of S T =1, 2 and 3 are obtained and an inter-manganese distance of 3.4 (±0.1) Å is estimated. The comparison with exchange coupling and inter-manganese distance data of other dimanganese proteins and model compounds leads to a tentative assignment of the Mn bridging ligands to bis(μ-hydroxo) (μ-carboxylato).  相似文献   

20.
Nephrocalcin inhibits the growth of calcium oxalate monohydrate crystals in the mammalian kidney. Isoforms A and B contain three equivalents of gamma-carboxyglutamic acid (Gla) residues implicated in Ca2+-binding and exhibit strong inhibitor properties and high Ca2+-binding affinity (Kd approximately 10(-8) M). Isoforms C and D lack these properties and exhibit low Ca2+-binding affinity (Kd approximately 10(-6) M). With VO2+ as a structural probe, electron paramagnetic resonance (EPR) studies of the Ca2+-binding sites of isoforms B and D showed that VO2+ binds competitively with a metal ion:protein stoichiometry of 4:1. EPR spectral parameters of the VO2+ ion were consistent with only equatorial oxygen-donor ligands. EPR and angle-selected electron nuclear double resonance (ENDOR) spectra showed two equatorially positioned, metal coordinating waters in isoform D while in isoform B no ligands undergoing hydrogen exchange were found. Since isoform D showed no evidence for axially coordinated water, similarly to isoform B, it is likely that the protein residues occupying the axial sites are identical in both proteins. ENDOR spectra of VO2+-complexes of isoforms B and D were compared to spectra of the VO2+-complex with alpha-ethylmalonic acid (EMA), a molecular mimic of Gla. Spectra of the VO2+-complex of EMA showed axial water located trans to the V=O bond and outer shell water hydrogen-bonded to the vanadyl oxygen, consistent with the X-ray structure of Ca(EMA)2. We, therefore, conclude that the spatial disposition of carboxylate groups of Gla residues coordinating Ca2+ in isoforms A and B must differ from that observed in the crystal structure of Ca(EMA)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号