首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A map of the positions of 12 of the 21 proteins of the 30 S ribosomal subunit of Escherichia coli (S1, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12 and S15), based on neutron scattering, is presented and discussed. Estimates for the radii of gyration of these proteins in situ are also obtained. It appears that many ribosomal proteins have compact configurations in the particle.  相似文献   

2.
Small-angle X-ray scattering studies have been conducted on solutions of 11S and 7S globulins isolated from peas (Pisum sativum cv. Filby), and the radii of gyration and molecular weights determined. The general features of the scattering curves were similar to those reported for other seed storage proteins.  相似文献   

3.
Small-angle x-ray and neutron scattering were used to study the structure of the ribosomal protein S1 (61 kDa) from Thermus thermophilus in solution at low and moderate ionic strength (0 and 100 mM NaCl). The protein was found to be globular in both cases. Modeling of the S1 structure comprising six homologous domains on the basis of the NMR data for one domain showed that the best fit to scattering data was provided by compact domain packing. The calculated gyration radius was 28–29 Å, as typical of globular proteins about 60 kDa. The protein was prone to self-association, forming mainly dimers and trimers at moderate ionic strength and higher compact associates at low ionic strength. Neutron scattering assays in heavy water at 100 mM NaCl revealed markedly elongated associates. The translational diffusion coefficient calculated for S1 at 100 mM NaCl from dynamic light scattering was markedly lower than the one expected for its globular monomer (D 20,w = (2.7 ± 0.1)·10?7 versus (5.8–6.0)·10?7 cm2 s?1), confirming protein association under equilibrium conditions.  相似文献   

4.
A fragment with a molecular weight of 170,000 and a sedimentation coefficient of 13 S which is capable of specifically binding ribosomal protein S4 has been obtained by digestion of Escherichia coli 16 S RNA with ribonuclease A. The 13 S fragment of 16 S RNA and its complex with protein S4 have been studied by different physical methods; in the first place, by neutron scattering. It has been shown that this fragment is very compact in solution. The radii of gyration of this fragment (50 ± 3 Å) and of protein S4 within the complex (17 ± 3 Å) coincide, within the limits of experimental error, with the radii of gyration for the free RNA fragment (47 ± 2 Å) and the free ribosomal protein S4 in solution (18 ± 2 Å). Hence the conclusion is drawn that the compactness of the RNA fragment and the ribosomal protein does not change on complex formation. The compact 13 S fragment of 16 S RNA is shown to be contrast-matched in solvent containing 70% 2H2O which corresponds to a value for the partial specific volume of RNA of 0.537 cm3/g.  相似文献   

5.
Structural models of biological macromolecules can be tested by comparing calculated and experimental solution scattering curves. We have developed an approach for computing scattering shape functions at medium resolution from models proposed on the basis of other techniques such as electron microscopy. We present the results obtained with the 50S ribosomal subunit from Escherichia coli; two models are considered, one proposed by Lake (1976), the other one by Tischendorf et al. (1975). Although the two models are similar in many respects, their scattering shape functions are significantly different. The comparison with the experimental scattering curve allows us to check the scale of the models and, after scaling, to quantitate the agreement between the observed and the calculated curves. Finally, it can provide a starting point for the structural interpretation of the X-ray data.  相似文献   

6.
The structure of protein SI of Thermus thermophilus (M = 61 kDa) in solution at low and moderate ionic strengths (0 M and 100 mM NaCl, respectively) has been studied by small-angle X-ray and neutron scattering. It was found that protein S1 has a globular conformation under both ionic conditions. The modelling of different packing of six homologous domains of S1 on the basis of the NMR-resolved structure of one domain showed that the best fit of calculated scattering patterns from such complexes to experimental ones is observed at a compact package of the domains. The calculated value of the radius of gyration of the models is 28-29 angtroms, which is characteristic for globular proteins with a molecular mass of about 60 kDa. It was found that protein S1 has a tendency to form associates, and the type of the associate depends on ionic strength. These associates have, in general, two or three monomers at a moderate ionic strength, while at a low ionic strength the number of monomers exceeds three and they are packed in a compact manner. Strongly elongated associates were observed in neutron experiments at a moderate ionic strength in heavy water. The association of protein molecules was also confirmed by the data of dynamic light scattering. From these data, the translational diffusion coefficient of protein S1 at a moderate ionic strength was calculated to be (D20,w = (2.7 +/- 0.1) x 10(-7)cm2/s). This value is essentially smaller than the expected value (D20,w = (5.8 - 6.0) x 10(-7)cm2/s) for the S1 monomer in the globular conformation, indicating the association of protein molecules under equilibrium conditions.  相似文献   

7.
Small-angle X-ray scattering using the Daresbury synchrotron source has been employed to obtain scattering curves from a 5% solution of the 11S soya globulin. The high intensity of the source allowed exposure times to be reduced by up to 1000 times compared with those for a conventional X-ray generator. Submaxima at higher angles were recorded which have not been reported previously. This improved resolution appears to result from reduced aggregation and/or denaturation of the protein due to the very short exposure times. Such detail in the scattering curve should be of importance for structural modelling of the proteins, particularly in the case of the 11S soya globulin for which intact individual subunits cannot be isolated.  相似文献   

8.
Neutron scattering distance data are presented for 33 protein pairs in the 30 S ribosomal subunit from Escherichia coli, along with the methods used for measuring distances between its exchangeable components. When combined with prior data, these new results permit the positioning of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit, completing the mapping of its proteins by neutron scattering. Comparisons with other data suggest that the neutron map is a reliable guide to the quaternary structure of the 30 S subunit.  相似文献   

9.
Ribonucleoprotein fragments of the 30 S ribosome of E. coli have been prepared by limited ribonuclease digestion and mild heating of the ribosome in a constant ionic environment. One such fragment has been described previously. A second electrophoretically homogeneous fragment has now been isolated and its RNA and protein moieties have been characterized. It contains the 5' half of the 16 S RNA, encompassing domains I and II except for the extreme 5' terminus and several small gaps. Seven proteins are present: S4, S5, S6, S8, S12, S15 and S20. The RNA binding sites of five of these proteins are known, and all are RNA sequences that are present in the fragment. Published neutron scattering and immuno-electron microscopic data indicate that six of the proteins are clustered together in a cross sectional slice through the center of the subunit. After deproteinization, the RNA moiety gives two bands in gel electrophoresis, one containing domains I and II and the other, essentially only domain II. The former, although larger, migrates faster in gel electrophoresis, indicating that RNA domains I and II interact with each other in such a way as to become more compact than domain II by itself.  相似文献   

10.
Synapse-associated protein 97 (SAP97) is a membrane-associated guanylate kinase protein that interacts with other proteins such as ion channels, subunits of glutamate receptors, and other cytoskeletal proteins and molecular scaffolds. The molecular diversity of SAP97 results from alternative splicing at the N-terminus, and in the U1 and U5 regions. There are two main N-terminal isoforms: the β-isoform has an L27 domain, whereas in the α-isoform, this is replaced by a palmitoylation motif. We have used multiangle light scattering, nuclear magnetic resonance, and small-angle X-ray scattering studies to characterize the conformation of a truncated form of the β-isoform, hence mimicking the α-isoform. This paper provides a comprehensive view of the small-angle X-ray scattering data, and the resulting data show that the scattering data are consistent with the presence of an ensemble of forms in dynamic equilibrium, with two prominent populations of compact and extended forms, with R(g) values of 38 ± 7 ? (52%) and 70 ± 10 ? (37%), respectively. The data show that without the L27 domain, the conformation of SAP97 is biased toward the compact form. We propose a hypothesis in which the overall conformation of SAP97 is determined by the nature of the N-terminus, which may, in turn, influence the specific role of a particular splice variant.  相似文献   

11.
Results of neutron-scattering experiments to determine the distances between seven pairs of proteins within the 30 S ribosomal subunit are presented. These results, combined with earlier data (Engelman et al., 1975; Moore et al., 1977) lead to the construction of a three-dimensional map of the positions of the centers of mass of proteins S3, S4, S5, S7, S8 and S9. The properties of this map and its relationship to other information on the structure of the 30 S subunit are discussed.  相似文献   

12.
The small-angle and wide-angle X-ray scattering of tRNAphe (yeast) and ribosomal 5S RNA (rat liver) in solution have been analysed and compared. tRNAphe in solution is folded into a compact L-shaped structure similar to its structure in crystals. The geometry of the secondary structure of the double helical regions is also equivalent to the A-form in the crystalline state. Despite differences between the molar mosses of 5S rRNA (40 000 g mol?1) and tRNAphe (25 000 g mol?1), and the fact that the 5S rRNA molecule is more anisometric than the tRNAphe molecule, there are many structural similarities. The geometrical parameters of the secondary structure of double helical regions in both RNA molecules are almost identical; the mean rise per base pair is about 0.253–0.28 nm and the mean turn angle is about 32.5–33.5. Identical cross-sectional radii of gyration, Rsq,1 ≈ 1.16 nm and Rsq,2 = 0.92 nm, identical molar mass per unit length, MΔx = 2500 g mol?1 nm?1, and a mean thickness of the molecules D ≈ 1.65 nm suggest a similar, nearly coplanar organization of isolated, double helical arms. Furthermore, there are compact regions in the central parts of both molecules, which are the sites of tertiary interactions in the tRNAphe molecule and are a potential site of tertiary interactions in the SS rRNA molecule for stabilization of the complicated L-shape of the two molecules. Both molecules have a pseudo-twofold axis,w hich may play a role in recognition for binding of specific proteins.  相似文献   

13.
Although accumulating evidence has revealed that most proteins can fold without the assistance of molecular chaperones, little attention has been paid to other types of chaperoning macromolecules. A variety of proteins interact with diverse RNA molecules in vivo, suggesting a potential role of RNAs for folding of their interacting proteins. Here we show that the in vitro refolding of a representative molecular chaperone, DnaK, an Escherichia coli homolog of Hsp70, could be assisted by its interacting 5S rRNA. The folding enhancement occurred in RNA concentration and its size dependent manner whereas neither the RNA with the reverse sequence of 5S rRNA nor the RNase pretreated 5S rRNA stimulated the folding in vitro. Based on our results, we propose that 5S rRNA could exert the chaperoning activity on DnaK during the folding process. The results suggest an interesting possibility that the folding of RNA-interacting proteins could be assisted by their cognate RNA ligands.  相似文献   

14.
A method of preparing 16 S RNA has been developed which yields RNA capable of binding specifically at least 12, and possibly 13, 30 S ribosomal proteins. This RNA, prepared by precipitation from 30 S subunits using a mixture of acetic acid and urea, is able to form stable complexes with proteins S3, S5, S9, S12, S13, S18 and possibly S11. In addition, this RNA has not been impaired in its capacity to interact with proteins S4, S7, S8, S15, S17 and S20, which are proteins that most other workers have shown to bind RNA prepared by the traditional phenol extraction procedure (Held et al., 1974; Garrett et al., 1971; Schaup et al., 1970,1971).We have applied several criteria of specificity to the binding of proteins to 16 S RNA prepared by the acetic acid-urea method. First, the new set of proteins interacts only with acetic acid-urea 16 S RNA and not with 16 S RNA prepared by the phenol method or with 23 S RNA prepared by the acetic acid-urea procedure. Second, 50 S ribosomal proteins do not interact with acetic acidurea 16 S RNA but do bind to 23 S RNA. Third, in the case of protein S9, we have shown that the bound protein co-sediments with acetic acid-urea 16 S RNA in a sucrose gradient. Additionally, a saturation binding experiment showed that approximately one mole of protein S9 binds acetic acid-urea 16 S RNA at saturation. Thus, we conclude that the method employed for the preparation of 16 S RNA greatly influences the ability of the RNA to form specific protein complexes. The significance of these results is discussed with regard to the in vitro assembly sequence.  相似文献   

15.
8S monomeric subunit of a human immunoglobulin M was investigated by small-angle X-ray scattering. The following molecular parameters were determined: radius of gyration 5.9 nm, maximum length 21 nm, hydrated volume 410 nm3 and two radii of gyration of the cross-section: 2.6 and 1.8 nm. A model equivalent in scattering was found and compared with the model for a human IgG also based on small-angle X-ray scattering data. The Cμ2 domain of the IgM obviously has a very loose structure, and the Fab angle of the 8S IgM (90°) is smaller than that of the IgG (134°).  相似文献   

16.
We present a de novo re-determination of the secondary (2°) structure and domain architecture of the 23S and 5S rRNAs, using 3D structures, determined by X-ray diffraction, as input. In the traditional 2° structure, the center of the 23S rRNA is an extended single strand, which in 3D is seen to be compact and double helical. Accurately assigning nucleotides to helices compels a revision of the 23S rRNA 2° structure. Unlike the traditional 2° structure, the revised 2° structure of the 23S rRNA shows architectural similarity with the 16S rRNA. The revised 2° structure also reveals a clear relationship with the 3D structure and is generalizable to rRNAs of other species from all three domains of life. The 2° structure revision required us to reconsider the domain architecture. We partitioned the 23S rRNA into domains through analysis of molecular interactions, calculations of 2D folding propensities and compactness. The best domain model for the 23S rRNA contains seven domains, not six as previously ascribed. Domain 0 forms the core of the 23S rRNA, to which the other six domains are rooted. Editable 2° structures mapped with various data are provided (http://apollo.chemistry.gatech.edu/RibosomeGallery).  相似文献   

17.
X-ray scattering titrations at 21 degree C and in ribosomal reconstitution buffer indicate that the S4-RNA and the protein S4 from a 1:1 complex with a stability constant, log K approximately 6.5. When the complex forms, there is only a limited change in the scattering curve indicating that S4-RNA essentially retains its conformation during the complex formation. The increase in the gyration radius as a result of the complex formation, delta R = 4 +/- 3 A, as well as the experimental scattering curve of the complex can be explained by models where the protein S4 is supposed to interact with the periphery of the S4-RNA.  相似文献   

18.
The three-dimensional locations of Escherichia coli ribosomal proteins S3, 86, S8 and S10 on the surface of the small subunit were determined by immune electron microscopy.All four proteins are located on the “external surface” of the small subunit; i.e. on the side of the subunit in contact with the cytosol in the 70 S ribosome. Proteins S3, S6, S8 and S10 map at single sites, although the S3 site is extended approximately 40Å along the long axis of the subunit. S8 is located near the base of the cleft separating the platform from the upper one-third or head; protein S10 is located in the head, near the site previously mapped for S14; S3 extends from the level of the constriction to near the top of the head in the vicinity of S10; and S6 is located on the platform of the small subunit near the site previously mapped for S11.The locations of these proteins correlate well with other information on their spatial relationships obtained from assembly interactions, neutron diffraction, crosslinking and protein associations.  相似文献   

19.
The shape of free Thermus flavus 5 S rRNA in solution at 1.3 nm resolution is restored from synchrotron x-ray scattering data using an ab initio simulated annealing algorithm. The free 5 S rRNA is a bent elongated molecule displaying a compact central region and two projecting arms, similar to those of the tRNA. The atomic models of the 5 S rRNA domains A-D-E and B-C in the form of elongated helices can be well accommodated within the shape, yielding a tentative model of the structure of the free 5 S rRNA in solution. Its comparison with the recent protein-RNA map in the ribosome (Svergun, D. I., and Nierhaus, K. H. (2000) J. Biol. Chem. 275, 14432-14439) indicates that the 5 S rRNA becomes essentially more compact upon complex formation with specific ribosomal proteins. A conceivable conformational change involves rotation of the B-C domain toward the A-D-E domain. The model of free 5 S rRNA displays no interactions between domains E and C, but such interactions are possible in the bound molecule.  相似文献   

20.
Tissue-specific expression of mouse alpha-amylase genes   总被引:45,自引:0,他引:45  
Ribosomal protein S4 isolated from the small (30 S) subunits of Escherichia coli ribosomes has been studied by a complex of physical methods such as sedimentation, ultraviolet absorption and circular dichroism spectroscopy, proton magnetic resonance spectroscopy, scanning microcalorimetry and neutron scattering. It has been shown that protein S4 exists in solution in a monomeric form. It is characterized by a high content of secondary structure including both α-helices (43%) and β-form (about 30%). The protein S4 molecules possess a well-developed tertiary structure which melts in a co-operative manner. The compactness of the molecules has been found to be very high (radius of gyration, Rg = 18 ± 2 A?), corresponding to that of standard compact globular proteins. The compactness of protein S4 does not change as a result of its interaction with the specifically binding 13 S fragment of the ribosomal 16 8 RNA; this suggests that serious conformational changes in protein S4 upon 30 S subunit assembly are unlikely and that the protein is compact within the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号