首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of the interfaces of nine dimeric and nine tetrameric proteins have been analyzed and have been seen to follow general principles. These interfaces are combinations of four structural motifs, which resemble features of monomeric proteins. These are: (i) extended beta sheet; (ii) helix-helix packing; (iii) sheet-sheet packing; and (iv) loop interactions. Other common structural features in the interfaces studied are two-fold symmetry, charged hydrogen bonds and channel formation (found only in tetramers). Monomer-monomer interfaces are intermediate in hydrophobicity and charge between the interfaces between secondary structures of monomeric proteins and the exteriors of monomeric proteins. A typical interface has one of the first three of the structural motifs at its centre and loop interactions around the outside, where most of the charge resides.  相似文献   

2.
3.
Poly(γ-benzyl-L -glutamate) having a terminal dimethylaminoanilide group as an electron donor (D) and a terminal 3,5-dinitrobenzoyl group as an electron acceptor (A) (A-[Glu(OBzl)]n-D) was synthesized by the N-carboxyanhydride method. Polymer samples were fractionated by gel chromatography and their number-average degrees of polymerization n were determined by the absorbances of the terminal chromophores. These polymers in chloroform and dimethylformamide solutions showed a charge-transfer (CT) absorption band around 455 nm, and the fraction of the polymer forming the CT complex was evaluated as a function of the chain length. CT absorption for short chains (n = 5 ~ 20) was attributed to intramolecular CT complex in which the A-[Glu(OBzl)]n-D chain takes cyclic conformations. An optimum chain length for the intramolecular CT was found to be n ? 10, where the [Glu(OBzl)]n chain may most easily bend back to form cyclic conformations. Stronger CT absorption observed for longer chains than n = 20 was shown to be intermolecular, and an intermolecular head-to-tail aggregation was found to be a cause of the strong CT interaction. All helical A-[Glu(OBzl)]n-D chains were found to form the head-to-tail dimers in chloroform solution.  相似文献   

4.
The three-dimensional structure of the enzyme diaminopimelate decarboxylase from Mycobacterium tuberculosis has been determined in a new crystal form and refined to a resolution of 2.33 Å. The monoclinic crystals contain one tetramer exhibiting D2-symmetry in the asymmetric unit. The tetramer exhibits a donut-like structure with a hollow interior. All four active sites are accessible only from the interior of the tetrameric assembly. Small-angle X-ray scattering indicates that in solution the predominant oligomeric species of the protein is a dimer, but also that higher oligomers exist at higher protein concentrations. The observed scattering data are best explained by assuming a dimer–tetramer equilibrium with about 7% tetramers present in solution. Consequently, at the elevated protein concentrations in the crowded environment inside the cell the observed tetramer may constitute the biologically relevant functional unit of the enzyme.  相似文献   

5.
Most of the transmethylation reactions use the same methyl donor, S-adenosylmethionine (SAM), that is synthesised from methionine and ATP by methionine adenosyltransferase (MAT). In mammals, two MAT enzymes have been detected, one ubiquitous and another liver specific. The liver enzyme exists in two oligomeric forms, a tetramer (MAT I) and a dimer (MAT III), MAT I being the one that shows a higher level of affinity for methionine but a lower SAM synthesis capacity. We have solved the crystal structure of rat liver MAT I at 2.7 A resolution, complexed with a methionine analogue: l-2-amino-4-methoxy-cis-but-3-enoic acid (l-cisAMB). The enzyme consists of four identical subunits arranged in two tight dimers that are related by crystallographic 2-fold symmetry. The crystal structure shows the positions of the relevant cysteine residues in the chain, and that Cys35 and Cys61 are perfectly oriented for forming a disulphide link. This result leads us to propose a hypothesis to explain the control of MAT I/III exchange and hence, the effects observed on activity. We have identified the methionine-binding site into the active-site cavity, for the first time. The l-cisAMB inhibitor is stacked against Phe251 aromatic ring in a rather planar conformation, and its carboxylate group coordinates a Mg(2+), which, in turn, is linked to Asp180. The essential role of the involved residues in MAT activity has been confirmed by site-directed mutagenesis. Phe251 is exposed to solvent and is located in the beginning of the flexible loop Phe251-Ala260 that is connecting the N-terminal domain to the central domain. We postulate that a conformational change may take place during the enzymatic reaction and this is possibly the reason of the unusual two-step mechanism involving tripolyphosphate hydrolysis. Other important mechanistic implications are discussed on the light of the results. Moreover, the critical role that certain residues identified in this study may have in methionine recognition opens further possibilities for rational drug design.  相似文献   

6.
Rapid perturbation experiments are highly relevant to elaborate the in vivo kinetics for mathematical models of metabolism, which are needed for selecting gene targets for metabolic engineering. Perturbations were applied to chemostat-cultivated biomass (D=0.05 h(-1), aerobic glucose/ethanol-limited) using the BioScope of Saccharomyces cerevisiae CEN. PK 113-7D over time span of 90 and 180 s. The availability of the external electron acceptor oxygen was decreased from fully aerobic to anaerobic conditions. It was observed that the changes in metabolome response under these conditions were limited to the pyruvate node. Acetaldehyde supply was used as an extra external electron acceptor during glucose perturbation under fully aerobic conditions. This had a strong effect on the metabolome dynamics and resulted in a significantly higher initial glycolytic flux. Dynamic response of the adenine nucleotides indicated that their behavior is not dictated by the glycolytic flux but is much more coupled to the cytosolic NADH/NAD(+) ratio through the equilibrium pool of fructose 1,6-bisphosphate and 2/3-phosphoglycerate. Also, the electron donor availability (glucose) was decreased. This did not result in significant changes in the concentrations of the glycolytic and tricarboxylic acid cycle metabolites, whereas the adenine nucleotides, especially ADP and AMP, showed the opposite response to that observed in a glucose pulse experiment. Surprisingly, trehalose was not mobilized in the time frame of 180 s.  相似文献   

7.
Summary Consideration was given to the response curves and response surfaces that are obtained when genotypes are grown at various levels of environmental factors. These curves and surfaces were used to illustrate genotype-environment interactions and possible relations between two parents and their F 1.When a hybrid had a response exactly intermediate between its parents, the metric values for the hybrid were not intermediate but varied with the environment, exhibiting different degrees of dominance including overdominance (hybrid vigour). A range in dominance for the metric also was found when the response of the hybrid was more similar to one parent than the other.A hybrid with an intermediate response has a lower phenotypic variance across environments than the mean variance of its parents. In some situations the hybrid's variance is less than that of either parent.A component of the error variation for a genotype was shown to vary with the environment having a minimal value when the environment was optimal.An algebraic treatment of response curves and surfaces was presented. In some instances the metric values for two parents and their F 1 in a range of environments may be related in the form of a multiple regression.  相似文献   

8.
The relative importance of three environmental variables known to influence the rate of bacterial sulfate reduction was examined using sediment from a saltmarsh pan. The variables investigated were temperature, electron donor concentration, and electron acceptor concentration. Their relative influence on the rate of bacterial sulfate reduction was examined with multiple replicate sediment samples in which the variables were experimentally adjusted. Sulfate reduction rates were measured with35SO 4 2– .The relative importance of each variable to sulfate reduction rate was assessed with multiple regression analysis by calculating the standardized partial regression coefficients, and the results were compared with the ranges of the three variables encountered in the natural sediment. Temperature proved to have the greatest influence, followed by electron donor and electron acceptor concentrations, in that order. The sulfate concentration was shown to have little influence on sulfate reduction rate at seawater concentrations of sulfate, but its effect increased if sulfate concentrations were diminished compared to those of seawater.  相似文献   

9.

Background  

gene identification in genomic DNA sequences by computational methods has become an important task in bioinformatics and computational gene prediction tools are now essential components of every genome sequencing project. Prediction of splice sites is a key step of all gene structural prediction algorithms.  相似文献   

10.
Human peroxiredoxins 1 and 2, also known as Prx1 and Prx2, are more than 90% homologous in their amino acid sequences. Prx1 and Prx2 are elevated in various cancers and are shown to influence diverse cellular processes. Although their growth regulatory role has traditionally been attributed to the peroxidase activity, the physiological significance of this function is unclear because the proteins are highly susceptible to inactivation by H(2)O(2). A chaperone activity appears to emerge when their peroxidase activity is lost. Structural studies suggest that they may form a homodimer or doughnut-shaped homodecamer. However, little information is available whether human Prx1 and Prx2 are duplicative in structure and function. We noted that Prx1 contains a cysteine (Cys(83)) at the putative dimer-dimer interface, which is absent in Prx2. We studied the role of Cys(83) in regulating the peroxidase and chaperone activities of Prx1, because the redox status of Cys(83) might influence the oligomeric structure and consequently the functions of Prx1. We show that Prx1 is more efficient as a molecular chaperone, whereas Prx2 is better suited as a peroxidase enzyme. Substituting Cys(83) with Ser(83) (Prx1C83S) results in dramatic changes in the structural and functional characteristics of Prx1 in a direction similar to those of Prx2. Here we also report the first crystal structure of human Prx1 and the presence of the Cys(83)-Cys(83) bond at the dimer-dimer interface of decameric Prx1. These findings are consistent with the hypothesis that human Prx1 and Prx2 possess unique functions and regulatory mechanisms and that Cys(83) bestows a distinctive identity to Prx1.  相似文献   

11.

Background

Influenza A viruses (IAVs) are important pathogens that affect the health of humans and many additional animal species. IAVs are enveloped, negative single-stranded RNA viruses whose genome encodes at least ten proteins. The IAV nucleoprotein (NP) is a structural protein that associates with the viral RNA and is essential for virus replication. Understanding how IAVs interact with host proteins is essential for elucidating all of the required processes for viral replication, restrictions in species host range, and potential targets for antiviral therapies.

Methods

In this study, the NP from a swine IAV was cloned into a yeast two-hybrid “bait” vector for expression of a yeast Gal4 binding domain (BD)-NP fusion protein. This “bait” was used to screen a Y2H human HeLa cell “prey” library which consisted of human proteins fused to the Gal4 protein’s activation domain (AD). The interaction of “bait” and “prey” proteins resulted in activation of reporter genes.

Results

Seventeen positive bait-prey interactions were isolated in yeast. All of the “prey” isolated also interact in yeast with a NP “bait” cloned from a human IAV strain. Isolation and sequence analysis of the cDNAs encoding the human prey proteins revealed ten different human proteins. These host proteins are involved in various host cell processes and structures, including purine biosynthesis (PAICS), metabolism (ACOT13), proteasome (PA28B), DNA-binding (MSANTD3), cytoskeleton (CKAP5), potassium channel formation (KCTD9), zinc transporter function (SLC30A9), Na+/K+ ATPase function (ATP1B1), and RNA splicing (TRA2B).

Conclusions

Ten human proteins were identified as interacting with IAV NP in a Y2H screen. Some of these human proteins were reported in previous screens aimed at elucidating host proteins relevant to specific viral life cycle processes such as replication. This study extends previous findings by suggesting a mechanism by which these host proteins associate with the IAV, i.e., physical interaction with NP. Furthermore, this study revealed novel host protein-NP interactions in yeast.
  相似文献   

12.
The crystal structure of the snake long alpha-neurotoxin, alpha-cobratoxin, bound to the pentameric acetylcholine-binding protein (AChBP) from Lymnaea stagnalis, was solved from good quality density maps despite a 4.2 A overall resolution. The structure unambiguously reveals the positions and orientations of all five three-fingered toxin molecules inserted at the AChBP subunit interfaces and the conformational changes associated with toxin binding. AChBP loops C and F that border the ligand-binding pocket move markedly from their original positions to wrap around the tips of the toxin first and second fingers and part of its C-terminus, while rearrangements also occur in the toxin fingers. At the interface of the complex, major interactions involve aromatic and aliphatic side chains within the AChBP binding pocket and, at the buried tip of the toxin second finger, conserved Phe and Arg residues that partially mimic a bound agonist molecule. Hence this structure, in revealing a distinctive and unpredicted conformation of the toxin-bound AChBP molecule, provides a lead template resembling a resting state conformation of the nicotinic receptor and for understanding selectivity of curaremimetic alpha-neurotoxins for the various receptor species.  相似文献   

13.
The membrane integral ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductase (or the cyt bc1 complex) and its physiological electron acceptor, the membrane-anchored cytochrome cy (cyt cy), are discrete components of photosynthetic and respiratory electron transport chains of purple non-sulfur, facultative phototrophic bacteria of Rhodobacter species. In Rhodobacter capsulatus, it has been observed previously that, depending on the growth condition, absence of the cyt bc1 complex is often correlated with a similar lack of cyt cy (Jenney, F. E., et al. (1994) Biochemistry 33, 2496-2502), as if these two membrane integral components form a non-transient larger structure. To probe whether such a structural super complex can exist in photosynthetic or respiratory membranes, we attempted to genetically fuse cyt cy to the cyt bc1 complex. Here, we report successful production, and initial characterization, of a functional cyt bc1-cy fusion complex that supports photosynthetic growth of an appropriate R. capsulatus mutant strain. The three-subunit cyt bc1-cy fusion complex has an unprecedented bis-heme cyt c1-cy subunit instead of the native mono-heme cyt c1, is efficiently matured and assembled, and can sustain cyclic electron transfer in situ. The remarkable ability of R. capsulatus cells to produce a cyt bc1-cy fusion complex supports the notion that structural super complexes between photosynthetic or respiratory components occur to ensure efficient cellular energy production.  相似文献   

14.
Certain mutations in S12, a ribosomal protein involved in translation elongation rate and translation accuracy, confer resistance to the aminoglycoside streptomycin. Previously we showed in Salmonella typhimurium that the fitness cost, i.e. reduced growth rate, due to the amino acid substitution K42N in S12 could be compensated by at least 35 different mutations located in the ribosomal proteins S4, S5 and L19. Here, we have characterized in vivo the fitness, translation speed and translation accuracy of four different L19 mutants. When separated from the resistance mutation located in S12, the three different compensatory amino acid substitutions in L19 at position 40 (Q40H, Q40L and Q40R) caused a decrease in fitness while the G104A change had no effect on bacterial growth. The rate of protein synthesis was unaffected or increased by the mutations at position 40 and the level of read-through of a UGA nonsense codon was increased in vivo, indicating a loss of translational accuracy. The mutations in L19 increased sensitivity to aminoglycosides active at the A-site, further indicating a perturbation of the decoding step. These phenotypes are similar to those of the classical S4 and S5 ram (ribosomal ambiguity) mutants. By evolving low-fitness L19 mutants by serial passage, we showed that the fitness cost conferred by the L19 mutations could be compensated by additional mutations in the ribosomal protein L19 itself, in S12 and in L14, a protein located close to L19. Our results reveal a novel functional role for the 50 S ribosomal protein L19 during protein synthesis, supporting published structural data suggesting that the interaction of L14 and L19 with 16 S rRNA could influence function of the 30 S subunit. Moreover, our study demonstrates how compensatory fitness-evolution can be used to discover new molecular functions of ribosomal proteins.  相似文献   

15.
Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.  相似文献   

16.
Wang SX  Esmon CT  Fletterick RJ 《Biochemistry》2001,40(34):10038-10046
The protease inhibitor ecotin fails to inhibit thrombin despite its broad specificity against serine proteases. A point mutation (M84R) in ecotin results in a 1.5 nM affinity for thrombin, 10(4) times stronger than that of wild-type ecotin. The crystal structure of bovine thrombin is determined in complex with ecotin M84R mutant at 2.5 A resolution. Surface loops surrounding the active site cleft of thrombin have undergone significant structural changes to permit inhibitor binding. Particularly, the insertion loops at residues 60 and 148 in thrombin, which likely mediate the interactions with macromolecules, are displaced when the complex forms. Thrombin and ecotin M84R interact in two distinct surfaces. The loop at residue 99 and the C-terminus of thrombin contact ecotin through mixed polar and nonpolar interactions. The active site of thrombin is filled with eight consecutive amino acids of ecotin and demonstrates thrombin's preference for specific features that are compatible with the thrombin cleavage site: negatively charged-Pro-Val-X-Pro-Arg-hydrophobic-positively charged (P1 Arg is in bold letters). The preference for a Val at P4 is clearly defined. The insertion at residue 60 may further affect substrate binding by moving its adjacent loops that are part of the substrate recognition sites.  相似文献   

17.
An interdomain hybrid Tet protein consisting of a class C alpha domain and a class B beta domain (Tet(C/B)) lacks detectable efflux ability and provides only minimal levels of resistance to tetracycline (Tc) (3 microg/ml) compared with intact class B (256 microg/ml) and class C (64 microg/ml). Twenty-one independently isolated mutants of the Tet(C/B) protein with increased Tc resistance were generated by random chemical mutagenesis. Nine mutants with a Glu substitution for Gly-152 in helix 5 of the class C alpha domain produced a resistance of 48 microg/ml, whereas another 9 with an Asp replacement of Gly-247 in helix 8 of the class B beta domain mediated resistance at 32 microg/ml. The third type of mutation, found in 3 mutants expressing 24 microg/ml resistance, was a S202F replacement in the putative interdomain cytoplasmic loop of Tet(C/B). The latter underscores a previously unappreciated function of the interdomain cytoplasmic loop. All three types of Tet(C/B) mutant proteins were expressed in amounts comparable with that of the original protein and demonstrated restored energy-dependent efflux of tetracycline. Site-directed mutational analysis demonstrated that a Gly-247 to Asn mutation could also facilitate Tc resistance by the Tet(C/B) hybrid, and a negatively charged side chain at position 152 was required for Tet(C/B) activity. These mutations appear to promote the necessary functional interactions between the interclass domains that do not occur in the Tet(C/B) hybrid protein and suggest a direct association between helix 5 and helix 8 in the function of Tet efflux proteins.  相似文献   

18.
The 2.2 A resolution crystal structure of recombinant human manganese superoxide dismutase, a homotetrameric enzyme that protects mitochondria against oxygen-mediated free radical damage, has been determined. Within each subunit, both the N-terminal helical hairpin and C-terminal alpha/beta domains contribute ligands to the catalytic manganese site. Two identical 4-helix bundles, symmetrically assembled from the N-terminal helical hairpins, form novel tetrameric interfaces that stabilize the active sites. Structurally altered polymorphic variants with reduced activity, such as tetrameric interface mutant Ile-58 to Thr, may produce not only an early selective advantage, through enhanced cytotoxicity of tumor necrosis factor for virus-infected cells, but also detrimental effects from increased mitochondrial oxidative damage, contributing to degenerative conditions, including diabetes, aging, and Parkinson's and Alzheimer's diseases.  相似文献   

19.
Human GLRX5 (glutaredoxin 5) is an evolutionarily conserved thiol-disulfide oxidoreductase that has a direct role in the maintenance of normal cytosolic and mitochondrial iron homoeostasis, and its expression affects haem biosynthesis and erythropoiesis. We have crystallized the human GLRX5 bound to two [2Fe-2S] clusters and four GSH molecules. The crystal structure revealed a tetrameric organization with the [2Fe-2S] clusters buried in the interior and shielded from the solvent by the conserved β1-α2 loop, Phe?? and the GSH molecules. Each [2Fe-2S] cluster is ligated by the N-terminal activesite cysteine (Cys??) thiols contributed by two protomers and two cysteine thiols from two GSH. The two subunits co-ordinating the cluster are in a more extended conformation compared with iron-sulfur-bound human GLRX2, and the intersubunit interactions are more extensive and involve conserved residues among monothiol GLRXs. Gel-filtration chromatography and analytical ultracentrifugation support a tetrameric organization of holo-GLRX5, whereas the apoprotein is monomeric. MS analyses revealed glutathionylation of the cysteine residues in the absence of the [2Fe-2S] cluster, which would protect them from further oxidation and possibly facilitate cluster transfer/acceptance. Apo-GLRX5 reduced glutathione mixed disulfides with a rate 100 times lower than did GLRX2 and was active as a glutathione-dependent electron donor for mammalian ribonucleotide reductase.  相似文献   

20.
The determination of the success of in situ bioremediation strategies is complex. By using controlled laboratory conditions, the influence of individual variables, such as U(VI), Cr(VI), and electron donors and acceptors on community structure, dynamics, and the metal-reducing potential can be studied. Triplicate anaerobic, continuous-flow reactors were inoculated with Cr(VI)-contaminated groundwater from the Hanford, WA, 100-H area, amended with lactate, and incubated for 95 days to obtain stable, enriched communities. The reactors were kept anaerobic with N(2) gas (9 ml/min) flushing the headspace and were fed a defined medium amended with 30 mM lactate and 0.05 mM sulfate with a 48-h generation time. The resultant diversity decreased from 63 genera within 12 phyla to 11 bacterial genera (from 3 phyla) and 2 archaeal genera (from 1 phylum). Final communities were dominated by Pelosinus spp. and to a lesser degree, Acetobacterium spp., with low levels of other organisms, including methanogens. Four new strains of Pelosinus were isolated, with 3 strains being capable of Cr(VI) reduction while one also reduced U(VI). Under limited sulfate, it appeared that the sulfate reducers, including Desulfovibrio spp., were outcompeted. These results suggest that during times of electron acceptor limitation in situ, organisms such as Pelosinus spp. may outcompete the more-well-studied organisms while maintaining overall metal reduction rates and extents. Finally, lab-scale simulations can test new strategies on a smaller scale while facilitating community member isolation, so that a deeper understanding of community metabolism can be revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号