首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of adenosine on the level of guanosine 3',5'-monophosphate in guinea pig cerebellar slices was investigated. Adenosine increased the concentration of guanosine 3',5'-monophosphate in the slices 3--4 fold. Upon removal of adenosine from the medium, the concentration of guanosine 3',5'-monophosphate returned to the initial level. AMP, ADP or ATP also increased the guanosine 3',5'-monophosphate level to the same extent as adenosine, while adenine or other nucleosides were not effective. In the absence of Ca2+ in the incubation medium, adenosine did not increase the concentration of guanosine 3',5'-monophosphate in cerebellar slices although level of adenosine 3',5'-monophosphate was elevated by adenosine. Anticholinergic agents, adrenergic blocking agents or antihistaminics did not prevent the increase of guanosine 3',5'-monophosphate by adenosine indicating that the effect of adenosine was not mediated by the release of neurotransmitters. The combination of adenosine with depolarizing agents showed an additive effect on the level of guanosine 3',5'-monophosphate indicating that adenosine increased the level of guanosine 3',5'-monophosphate by a different mechanism from the depolarization.  相似文献   

2.
Sodium azide, hydroxylamine, and phenylhydrazine at concentrations of 1 mM increased the activity of soluble guanylate cyclase from rat liver 2- to 20-fold. The increased accumulation of guanosine 3':5'-monophosphate in reaction mixtures with sodium azide was not due to altered levels of substrate, GTP, or altered hydrolysis of guanosine 3':5'-monophosphate by cyclic nucleotide phosphodiesterase. The activation of guanylate cyclase was dependent upon NaN3 concentration and temperature; preincubation prevented the time lag of activation observed during incubation. The concentration of NaN3 that resulted in half-maximal activation was 0.04 mM. Sodium azide increased the apparent Km for GTP from 35 to 113 muM. With NaN3 activation the enzyme was less dependent upon the concentration of free Mn2+. Activation of enzyme by NaN3 was irreversible with dilution or dialysis of reaction mixtures. The slopes of Arrhenius plots were altered with sodium azide-activated enzyme, while gel filtration of the enzyme on Sepharose 4B was unaltered by NaN3 treatment. Triton X-100 increased the activity of the enzyme, and in the presence of Triton X-100 the activation by NaN3 was not observed. Trypsin treatment decreased both basal guanylate cyclase activity and the responsiveness to NaN3. Phospholipase A, phospholipase C, and neuraminidase increased basal activity but had little effect on the responsiveness to NaN3. Both soluble and particulate guanylate cyclase from liver and kidney were stimulated with NaN3. The particulate enzyme from cerebral cortex and cerebellum was also activated with NaN3, whereas the soluble enzyme from these tissues was not. Little or no effect of NaN3 was observed with preparations from lung, heart, and several other tissues. The lack of an effect with NaN3 on soluble GUANYLATE Cyclase from heart was probably due to the presence of an inhibitor of NaN3 activation in heart preparations. The effect of NaN3 was decreased or absent when soluble guanylate cyclase from liver was purified or stored at -20degrees. The activation of guanylate cyclase by NaN3 is complex and may be the result of the nucleophilic agent acting on the enzyme directly or what may be more likely on some other factor in liver preparations.  相似文献   

3.
Guanylate cyclase, which catalyzes the synthesis of guanosine 3',5'-monophosphate, has been assayed in several strains of Escherichia coli. They include wild-type cells and mutants defective in adenylate cyclase, which is responsible for the synthesis of adenosine 3',5'-phosphate. Our results demonstrate that adenylate cyclase and guanylate cyclase are two different enzymes in E. coli and suggest that the gene that encodes adenylate cyclase also plays a regulatory role in the synthesis of guanylate cyclase.  相似文献   

4.
Mn2+ and to some degree Fe2+, but not Mg+, Ca2+, ba2+, Sr2+, Co2+, Ni2+, La3+, or Fe3+ were able to serve as effective metal cofactors for sea urchin sperm guanylate cyclase. The apparent Michaelis constant for Mn2+ in the presence of 0.25 mM MnGTP was 0.23 mM. In the presence of a fixed free mn2+ concentration, variation in mngTP resulted in sigmoid velocity-substrate plots and in reciprocal plots that were concave upward. These positive cooperative patterns were observed at both pH 7.0 and 7.8 and in the presence or absence of Triton X-100. When Mn2+ and GTP were equimolar, Ca2+, Ba2+, Sr2+, and Mg2+ increased apparent guanylate cyclase activity. This increase in enzyme activity at least could be accounted for partially by an increase in free Mn2+ concentration caused by the complex formation of GTP with the added metals. However, even at relatively low GTP concentrations and with Mn2+ concentrations in excess of GTP, Ca2+, Sr2+, and Ba2+ significantly increased guanosine 3':5'-monophosphate production. As the total GTP concentration was increased, the degree of stimulation in the presence of Ca2+ decreased, despite maintenance of a fixed total concentration of Ca2+ and a fixed free concentration of Mn2+, suggesting that the concentration of CaGTP and MnGTP were determining factors in the observed response. The concave upward reciprocal plots of velocity against MnGTP concentration were changed to linear plots in the presence of CaGTP or SrGTP. These results suggest that sea urchin sperm guanylate cyclase contains multiple nucleotide binding sites and that stimulation of guanosine 3':5'-monophosphate synthesis by Ca2+, Sr2+, and perhaps other metals may reflect interaction of a metal-GTP complex with enzyme as either an effector or a substrate.  相似文献   

5.
Adenylate, guanylate cyclase and protein kinases in a fibrous sarcoma originating from rat prostate have been studied. A decrease in levels of adenosine 3', 5'-monophosphate (cyclic AMP) and adenylate cyclase activities and an increase in levels of guanosine 3',5'-monophosphate (cyclic GMP) and guanylate cyclase activities were observed in the tumor tissue when compared with the normal prostatic tissue of rats. Protein kinases from the tumor and the prostate were both responsive to exogenous cyclic AMP, with an apparent Ka of 0.08 muM in the tumor and of 0.11 muM in the prostate. It is of interest that the protein kinases from the tumor responded to cyclic AMP to the same extent as was observed in the enzyme preparation from the prostate. The protein kinase from the tumor was more sensitive to cyclic GMP than that from the prostate, showing an apparent Ka of 0.88 muM in the tumor and of 4.85 muM in the prostate. This tumor has been characterized with an increase in guanylate cyclase activities with a subsequent rise in cellular cyclic GMP and an increased sensitivity of the protein kinase to cyclic GMP.  相似文献   

6.
The activities of guanylate cyclase, guanosine 3', 5'-monophosphate (cyclic GMP) phosphodiesterase and 5'-nucleotidase were measured during postnatal development in retinas of control and C3H/HeJ mice. In control retina, each of these enzyme activities increases in conjunction with photoreceptor cell differentiation and maturation. In C3H retina, guanylate cyclase and 5-nucleotidase activities increase with photoreceptor cell development and decrease with photoreceptor cell death. However, the activity of a class of cyclic GMP phosphodiesterase which distinguishes the photoreceptor cells of control mice and those of several other species is not demonstrable in retina of C3H mice at any age. It is suggested that the deficiency in cyclic GMP phosphodiesterase activity may account for the accumulation of cyclic GMP which has been shown to occur in the C3H photoreceptor cells before they degenerate.  相似文献   

7.
8.
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers involved in the intracellular signal transduction of a wide variety of extracellular stimuli. These signals regulate many biological processes including cell proliferation, differentiation, migration, and apoptosis. Recently, significant progress has been achieved in the molecular basis underlying cyclic nucleotide regulation of cell proliferation. This review summarizes our knowledge of the signaling pathways regulated by cyclic nucleotides in arterial smooth muscle cells.  相似文献   

9.
While there is evidence of nitric oxide (NO)-dependent signalling via the second messenger cyclic guanosine 3',5'-monophosphate (cGMP) in plants, guanylate cyclases (GCs), enzymes that catalyse the formation of cGMP from guanosine 5'-triphosphate (GTP) have until recently remained elusive and none of the candidates identified to-date are NO-dependent. Using both a GC and heme-binding domain specific (H-NOX) search motif, we have identified an Arabidopsis flavin monooxygenase (At1g62580) and shown electrochemically that it binds NO, has a higher affinity for NO than for O(2) and that this molecule can generate cGMP from GTP in vitro in an NO-dependent manner.  相似文献   

10.
Hydrazine, a chemical carcinogen in tobacco and tobacco smoke, has been shown to induce the production of a variety of tumors in rats. The present report demonstrates that hydrazine stimulates the enzyme guanylate cyclase (EC 4.6.1.2) which catalyzes the production of guanosine 3′,5′-monophosphate. At a maximal concentration of 100 mM, hydrazine activated guanylate cyclase 45-fold in liver, 39-fold in colon, 22-fold in stomach, 19-fold in heart, 18-fold in pancreas, 8-fold in lung and kidney, and 4-fold in spleen. Since recent evidence suggests a role for guanosine 3′,5′-monophosphate in malignant transformation, these data may help explain the tumor inducing capacity of this tobacco carcinogen.  相似文献   

11.
A mixture containing glucagon and thyroid hormone was previously devised that enhances markedly nuclear DNA replication and mitosis in the parenchymal liver cells of the unoperated rat. It is now shown that the glucagon of the stimulatory solution can be completely replaced by a mixture of a butyryl derivative of cyclic adenosine 3':5'-monophosphate and theophylline. Cyclic guanosine 3':5'-monophosphate and its butyryl derivatives and insulin and high levels of glucose are inactive. The inactivity of N2-monobutyryl cyclic guanosine 3':5'-monophosphate cannot be ascribed to rapid breakdown in the animal or to the impenetrability of the liver cell since the coumpound elevates the rate of hepatic amino acid transport and the activity of ornithine decarboxylase. The observation of others (MacManus, J.P., Franks, D.J., Youdale, T. & Braceland, B.M. (1972) Biochem. Biophys. Res. Commun. 49, 1201-1207) that the level of cylcic adenosine 3':5'-monophosphate is raised during most of the prereplicative period after 70% hepatectomy is confirmed. The evidence supports a positive role for adenosine 3':5-monophosphate in regulating DNA synthesis in the liver.  相似文献   

12.
A binding protein specific for cyclic guanosine 3':5'-monophosphate (cyclic GMP) has been partially purified from extracts of the eubacterium Caulobacter crescentus and resolved from cyclic adenosine 3':5'-monophosphate (cyclic AMP)-binding activity. Binding of cyclic GMP is not affected by the addition of cyclic AMP or 5'-GMP, but is inhibited about 50 percent by a 50-fold molar excess of dibutyryl cyclic GMP or cyclic hypoxanthine 3':5'-monophosphate. The apparent dissociation constant for the cyclic GMP-binding protein complex is 1.1 X 10(-6) M.  相似文献   

13.
The Lubrol-dispersed guanylate cyclase from sea urchin sperm was purified and isolated essentially free of detergent by GTP affinity chromatography, DEAE-Sephadex chromatography, and gel filtration. After removal of the detergent, the enzyme remained in solution in the presence of 20% glycerol. The specific activity of the purified enzyme was about 12 mumol of guanosine 3':5'-monophosphate (cyclic GMP) formed - min-1 - mg of protein-1 at 30 degrees, an activity about 4600 times that of a soluble guanylate cyclase purified recently from Escherichia coli (Macchia V., Varrone, S., Weissbach, H., Miller, D.L., and Pastan, I. (1975) J. Biol. Chem. 250, 6214-6217). The cyclic GMP phosphodiesterase activity was negligible and adenosine 3':5'-monophosphate (cyclic AMP) phosphodiesterase was not detectable in the purified preparation. Cyclic AMP formation from ATP occurred at a rate of 0.002% of that of guanylate cyclase. In the absence of phosphodiesterase or guanosine triphosphatase inhibitors, 100% of the added GTP was converted to cyclic GMP. The purified enzyme required Mn2+ for maximum activity, the relative rates in the presence of Mg2+ or Ca2+ being less than 0.6% of the rates with Mn2+. The purified enzyme displayed classical Michaelis-Menten kinetics with respect to MnGTP (apparent Km is approximately equal to 170 muM) in contrast to the positively cooperative kinetic behavior displayed by the unpurified, detergent-dispersed, or particulate guanylate cyclase. The molecular weight of the purified enzyme was approximately 182,000 as estimated on Bio-Gel A-0.5m columns equilibrated in the presence or absence of 0.1 M NaCl. The unpurified, detergent-dispersed enzyme also migrated with an apparent molecular weight of 182,000 on columns equilibrated with 0.5% Lubrol WX and 0.1 M NaCl, but it migrated as a large aggregate (molecular weight is greater than 5 X 10(5)) on columns equilibrated in the absence of either the detergent of NaCl. After gel filtration, the unpurified, dispersed enzyme still yielded positive cooperative kinetic patterns as a function of MnGTP. Na dodecyl-SO4 gel electrophoresis of the enzyme after the DEAE-Sephadex or the gel filtration steps resulted in two major protein bands with estimated molecular weights of 118,000 and 75,000. Whether or not these protein bands represent the subunit molecular weights of guanylate cyclase is unknown at present.  相似文献   

14.
The metabolic turnover in the isolated in vitro perfused and superfused rat skeletal muscle (musculus gracilis cranialis) was enhanced by increasing the medium flow rate under relaxed conditions. In a recent study we have measured the tissue concentrations of second messengers: cyclic adenosine 3'5'-monophosphate (cAMP), cyclic guanosine 3'5'-monophosphate (cGMP), and D-myo-inositol 1,4,5-trisphosphate (IP3) under similar experimental conditions to analyze their potential role in the described stimulation of metabolic rate by changes of perfusion flow rate. The tissue levels of the two second messengers' cAMP and cGMP were not significantly changed after increasing the perfusion flow rate and they probably have no transduction role in the induced alteration of skeletal muscle metabolism. However, the IP3 content was extremely reduced after increasing flow rate. This decrease in the tissue concentration of IP3 induced by increasing the flow rate indicates the possible role of IP3 in this signal transduction, leading to changes in the cellular metabolic pathways.  相似文献   

15.
Cyclic guanosine 3'5'-monophosphate was isolated and purified from Mycobacterium smegmatis TMC 1515 using ion exchange chromatography. It was characterized by thin layer chromatography and radioimmunoassay. Guanylate cyclase and cGMP phosphodiesterase were detected in the cytosolic and particulate (37,000 X g pellet) fractions respectively. On the basis of our observations, cGMP appears to play a dual role (i) at the time of induction of cell proliferation and (ii) protects the bacteria against unfavourable surroundings during stationary phase of the growth. This is the first report demonstrating presence of cGMP, guanylate cyclase and cGMP phosphodiesterase in mycobacteria.  相似文献   

16.
D L Vesely  D C Lehotay  G S Levey 《Enzyme》1978,23(5):356-360
The nucleotide cyclic GMP has been reported to be involved in cell proliferation and malignant transformation. Nitroso chemical carcinogens activate the enzyme guanylate cyclase (EC 4.6.1.2) which catalyzes the production of cyclic GMP. The present investigation demonstrates that compounds from other major classes of carcinogens including (1) alpha-halo ethers (chloromethyl methyl ether); (2) aromatic amines (benzidine and B-naphthylamine); (3) polycyclic hydrocarbons (1,2-benzanthracene and acridine); (4) azo dyes (p-dimethylaminoazobenzene), and (5) aflatoxins (B1, B2, G1, G2) produced a striking and significant inhibition of guanylate cyclase over a general concentration range of 0.5-13 mmol/1 in a variety of tissues. Some of the nitrosamides which increase guanylate cyclase activity, increase DNA synthesis whereas carcinogens which decrease guanylate cyclase activity inhibit DNA or RNA synthesis suggesting a relationship between cyclic GMP, DNA synthesis, and chemical carcinogenesis.  相似文献   

17.
To investigate the role of guanosine 3':5'-monophosphate (cyclic GMP) in cultured cells we have measured guanylate cyclase and cyclic GMP phosphodiesterase activities and cyclic GMP levels in normal and transformed fibroblastic cells. Guanylate cyclase activity is found almost exclusively in the particulate fraction of normal rat kidney (NRK) and BALB 3T3 cells. Enzyme activity is stimulated 3- to 10-fold by treatment with the detergent Lubrol PX. However, enhancement of guanylate cyclase by fibroblast growth factor could not be demonstrated under a variety of assay conditions. In both NRK and BALB 3T3 cells guanylate cyclase activity is low during logarithmic growth and increases as the cells crowd together and growth slows. Guanylate cyclase activity is undetectable in homogenates of NRK cells transformed by the Kirsten sarcoma virus (KNRK cells) either in the presence or absence of Lubrol PX. Guanylate cyclase activity is also greatly decreased in NRK cells transformed by Moloney, Schmidt-Ruppin, or Harvey viruses. BALB 3T3 cells transformed by RNA viruses (Kirsten, Harvey, or Moloney), by a DNA virus (SV40), by methylcholanthrene, or spontaneously, all have diminished but readily detectable guanylate cyclase activity. Cyclic GMP phosphodiesterase activity is found predominately in the soluble fraction of NRK cells. This activity increases slightly as NRK cells enter the stationary growth phase. Cyclic GMP phosphodiesterase activity is undetectable in two clones of KNRK cells under a variety of assay conditions, and is decreased relative to the level present in NRK cells in a third KNRK clone. However, both Moloney- and Schmidt-Ruppin-transformed NRK cells have a phosphodiesterase activity similar to that found in NRK cells. Boiled supernatant from both NRK and KNRK cells is observed to appreciably enhance the activity of activator-deficient phosphodiesterase from bovine heart. This result indicates that the absence of cyclic GMP phosphodiesterase activity in KNRK cells is not due to a loss of the phosphodiesterase activator. The intracellular concentration of cyclic GMP is found to be very low in transformed NRK cells when compared to levels measured in confluent NRK cells. The low levels of cyclic GMP in transformed NRK cells reflect the greatly decreased guanylate cyclase activity observed in these cells. These results do not appear to support the suggestion that cyclic GMP promotes the growth of fibroblastic cells.  相似文献   

18.
The levels of serum potassium, blood glucose, and plasma adenosine cyclic 3':5'-monophosphate (cAMP) and guanosine cyclic 3':5'-monophosphate (cGMP) were studied after the portal vein injection of cyclic nucleotides and their derivatives, (cAMP, cGMP, N6, O2'-dibutyryl adenosine 3':5'-monophosphate (DBcAMP), N6-monobutyryl adenosine cyclic 3':5'-monophosphate (NMBcAMP), and O2'-monobutyryl adenosine cyclic 3':5'-monophosphate (OMBcAMP), into dogs. Dose-related hyperglycemic responses were observed after the injection of DBcAMP (1-8 mg/kg). Transient and prominent hyperkalemia and hyperglycemia were caused by the injection of DBcAMP, NMBcAMP, and OMBcAMP (4 mg/kg). The hyperkalemic response was highest with NMBcAMP (1.22 mequiv./L), followed by OMBcAMP (0.64), DBcAMP (0.54), cGMP (0.47), and cAMP (0.41), whereas the hyperglycemic response was highest with NMBcAMP (146 mg/100 mL), followed by DBcAMP (93.6), OMBcAMP (77.1), and cAMP (56.0), and there was only a slight change with cGMP (28.4) compared with the control. The plasma level of cAMP was maximal with DBcAMP (1.92 nmol/mL), followed by NMBcAMP (1.28) and OMBcAMP (0.76), whereas the plasma levels of cGMP showed no evident change, except that caused by DBcAMP (0.27). Of the cyclic nucleotides tested, NMBcAMP was found to be most potent in causing both hyperkalemia and hyperglycemia. Based on these results, possible correlations between hyperkalemia, hyperglycemia, and plasma levels of cAMP and cGMP are discussed.  相似文献   

19.
The sulphatase A (aryl-sulphate sulphohydrolase, EC 3.1.6.1) of ox liver hydrolyses adenosine 3',5'-monophosphate (cyclic AMP) to adenosine 5'-phosphate at an optimum pH of approx. 4.3, close that for the hydrolysis of cerebroside sulphate, a physiological substrate for sulphatase A. The Km is 11.6 mM for cyclic AMP. On polyacrylamide gel electrophoresis sulphatase A migrates as a single protein band which coincides with both the arylsulphatase and phosphodiesterase activities, suggesting that these are due to a single protein. Cyclic AMP competitively inhibits the arylsulphatase activity of sulphatase A, showing that both activities are associated with a single active site on the enzyme. sulphatase A also hydrolyses guanosine 3',5'-monophosphate, but not uridine 3',5'-monophosphate nor adenosine 2',3'-monophosphate.  相似文献   

20.
Experiments using a phosphodiesterase-minus mutant of Dictyostelium discoideum indicate that ligand-induced loss of cell surface cyclic adenosine 3':5'-monophosphate binding sites (down regulation) can be evoked with concentrations of cyclic adenosine 3':5'-monophosphate as low as 10(-8) M. The loss of receptor sites is observed after 5 min of cell preincubation with cyclic adenosine 3':5'-monophosphate and can be as extensive as 75 to 80%. This decrease in binding sites is correlated with the appearance of a slowly dissociating cyclic adenosine 3':5'-monophosphate binding component. Radioactive cyclic adenosine 3':5'-monophosphate bound to this form of receptor cannot be competed for by nonradioactive cyclic adenosine 3':5'-monophosphate or adenosine 5'-monophosphate and is not accessible to hydrolysis by cyclic adenosine 3':5'-monophosphate phosphodiesterase. The extent of appearance of this binding component is dependent upon the concentration of cyclic adenosine 3':5'-monophosphate used to elicit the down regulation response and the temperature of the incubation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号