首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure of photosystem II membranes to trypsin that has been treated to inhibit chymotrypsin activity produces limited hydrolysis of manganese stabilizing protein. Exposure to chymotrypsin under the same conditions yields substantial digestion of the protein. Further probing of the unusual insensitivity of manganese stabilizing protein to trypsin hydrolysis reveals that increasing the temperature from 4 to 25 degrees C will cause some acceleration in the rate of proteolysis. However, addition of low (100 microM) concentrations of NH2OH, that are sufficient to reduce, but not destroy, the photosystem II Mn cluster, causes a change in PS II-bound manganese stabilizing protein that causes it to be rapidly digested by trypsin. Immunoblot analyses with polyclonal antibodies directed against the N-terminus of the protein, or against the entire sequence show that trypsin cleavage produces two distinct peptide fragments estimated to be in the 17-20 kDa range, consistent with proposals that there are 2 mol of the protein/mol photosystem II. The correlation of trypsin sensitivity with Mn redox state(s) in photosystem II suggest that manganese stabilizing protein may interact either directly with Mn, or alternatively, that the polypeptide is bound to another protein of the photosystem II reaction center that is intimately involved in binding and redox activity of Mn.  相似文献   

2.
In solution, Manganese Stabilizing Protein, the polypeptide which is responsible for the structural and functional integrity of the manganese cluster in photosystem II, is a natively unfolded protein with a prolate ellipsoid shape [Lydakis-Simantiris et al. (1999) Biochemistry 38, 404-414; Zubrzycki et al. (1998) Biochemistry 37, 13553-13558]. The C-terminal tripeptide of Manganese Stabilizing Protein was shown to be critical for binding to photosystem II and restoration of O(2) evolution activity [Betts et al. (1998) Biochemistry 37, 14230-14236]. Here, we report new biochemical, hydrodynamic, and spectroscopic data on mutants E246K, E246STOP, L245E, L245STOP, and Q244STOP. Truncation of the final dipeptide (E246STOP) or substitution of Glu246 with Lys resulted in no significant changes in secondary and tertiary structures of Manganese Stabilizing Protein as monitored by CD spectroscopy. The apparent molecular mass of the protein remained unchanged, both mutants were able to rebind to photosystem II, and both proteins reactivate O(2) evolution. Manganese Stabilizing Protein lacking the final tripeptide (L245STOP), or substitution of Glu for Leu245 dramatically modified the protein's solution structure. The apparent molecular masses of these mutants increased significantly, which might indicate unfolding of the protein in solution. This was verified by CD spectroscopy. Both mutant proteins rebound to photosystem II with lower affinities, and activation of O(2) evolution was decreased dramatically. Enhancement of these defects was observed upon removal of the final tetrapeptide (Q244STOP). These results indicate that Leu245 is essential to maintaining Manganese Stabilizing Protein's solution structure in a conformation that promotes efficient binding to photosystem II and/or for the subsequent steps that lead to enzyme activation. Based on an analysis of the properties of C-terminal mutations, a hypothesis for structural requirements for functional binding of Manganese Stabilizing Protein to photosystem II is presented. Effects of C-terminal mutations on the UV spectrum of Manganese Stabilizing Protein were also examined. Mutations that alter solution structure also affect a 293 nm absorption shoulder which is assigned to the only tryptophan residue, Trp241, in the protein, and this absorbance feature is shown to be a useful indicator of alterations to the Trp241 environment.  相似文献   

3.
Photosystem II (PSII) is the plant photosynthetic reaction center that carries out the light driven oxidation of water. The water splitting reactions are catalyzed at a tetranuclear manganese cluster. The manganese stabilizing protein (MSP) of PSII stabilizes the manganese cluster and accelerates the rate of oxygen evolution. MSP can be removed from PSII, with an accompanying decrease in activity. Either an Escherichia coli expressed version of MSP or native, plant MSP can be rebound to the PSII reaction center; MSP reconstitution reverses the deleterious effects associated with MSP removal. We have employed Fourier transform infrared (FTIR) spectroscopy and solution small angle x-ray scattering (SAXS) techniques to investigate the structure of MSP in solution and to define the structural changes that occur before and after reconstitution to PSII. FTIR and SAXS are complementary, because FTIR spectroscopy detects changes in MSP secondary structure and SAXS detects changes in MSP size/shape. From the SAXS data, we conclude that the size/shape and domain structure of MSP do not change when MSP binds to PSII. From FTIR data acquired before and after reconstitution, we conclude that the reconstitution-induced increase in beta-sheet content, which was previously reported, persists after MSP is removed from the PSII reaction center. However, the secondary structural change in MSP is metastable after removal from PSII, which indicates that this form of MSP is not the lowest energy conformation in solution.  相似文献   

4.
The importance of the N-terminal domain of manganese stabilizing protein in binding to photosystem II has been previously demonstrated [Eaton-Rye and Murata (1989) Biochim. Biophys. Acta 977, 219-226; Odom and Bricker (1992) Biochemistry 31, 5616-5620]. In this paper, we report results from a systematic study of functional and structural consequences of N-terminal elongation and truncation of manganese stabilizing protein. Precursor manganese stabilizing protein is the unprocessed wild-type protein, which carries an N-terminal extension of 84 amino acids in the form of its chloroplastic signal peptide. Despite its increased size, this protein is able to reconstitute O(2) evolution activity to levels observed with the mature, processed protein, but it also binds nonspecifically to PSII. Truncation of wild-type manganese stabilizing protein by site-directed mutagenesis to remove three N-terminal amino acids, resulting in a mutant called DeltaG3M, causes no loss of activity reconstitution, but this protein also exhibits nonspecific binding. Further truncation of the wild-type protein by ten N-terminal amino acids, producing DeltaE10M, limits binding of manganese stabilizing protein to 1 mol/mol of photosystem II and decreases activity reconstitution to about 65% of that obtained with the wild-type protein. Because two copies of wild type normally bind to photosystem II, amino acids in the domain (4)K-(10)E must be involved in the binding of one copy of manganese stabilizing protein to photosystem II. Spectroscopic analysis (CD and UV spectra) reveals that N-terminal elongation and deletion of manganese stabilizing protein influence its overall conformation, even though secondary structure content is not perturbed. Our data suggest that the solution structure of manganese stabilizing protein attains a more compact solution structure upon removal of N-terminal amino acids.  相似文献   

5.
The Photosystem II (PS II) manganese stabilizing protein (MSP) possesses characteristics, including thermostability, ascribed to the natively unfolded class of proteins (Lydakis-Simantiris et al. (1999) Biochemistry 38: 404–414). A site-directed mutant of MSP, C28A, C51A, which lacks the -S–S- bridge, also binds to PS II at wild-type levels and reconstitutes oxygen evolution activity [Betts et al. (1996) Biochim Biophys Acta 1274: 135–142], although the mutant protein is even more disordered in solution. Both WT and C28A, C51A MSP aggregate upon heating, but an examination of the effects of protein concentration and pH on heat-induced aggregation showed that each MSP species exhibited greater resistance to aggregation at a pH near their pI (5.2) than do either bovine serum albumin (BSA) or carbonic anhydrase, which were used as model water soluble proteins. Increases in pH above the pI of the MSPs and BSA enhanced their aggregation resistance, a behavior which can be predicted from their charge (MSP) or a combination of charge and stabilization by -S–S- bonds (BSA). In the case of aggregation resistance by MSP, this is likely to be an important factor in its ability to avoid unproductive self-association reactions in favor of formation of the protein–protein interactions that lead to formation of the functional oxygen evolving complex.  相似文献   

6.
When manganese stabilizing protein (MSP) was treated with 0.5 mM N-succinimidyl propionate (NSP), the rebinding ability and oxygen-releasing capabilities of the modified MSP were not altered, in spite of changes of MSP surface Lys residues. Furthermore, far-ultraviolet circular dichroism and intrinsic fluorescence spectra analysis revealed that 0.5 mM NSP-modified MSP retained most of its native secondary and tertiary structure. Mapping of the sites of NSP modification by Staphylococcus V8 protease digestion of the modified protein, as well as analysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry, indicated that seven Lys residues were modified. The results suggested that these residues are not absolutely essential to the structure and function of MSP. However, when the NSP concentration was increased to 4 mM, the modified MSP was unable to bind photosystem Ⅱ and completely lost its reactivating capability. Both far-ultraviolet circular dichroism and intrinsic fluorescence spectra analysis revealed a clear conformational change in MSP after 4 mM NSP treatment, suggesting that some Lys residues are involved in maintaining the structure and function of MSP. Analysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated that another six Lys residues, namely Lys20, Lys 101, Lys196, Lys207, Lysl30 (or Lys137) and Lys66 (or Lys76), were modified by 4 mM NSP. Therefore, these six Lys residues are crucial in maintaining the structure and function of soluble MSP.  相似文献   

7.
Popelkova H  Im MM  Yocum CF 《Biochemistry》2003,42(20):6193-6200
The N-terminus of spinach photosystem II manganese stabilizing protein (MSP) contains two amino acid sequences, (4)KRLTYD(10)E and (15)TYL(18)E, that are necessary for binding of two copies of this subunit to the enzyme [Popelkova et al. (2002) Biochemistry 41, 10038-10045]. To better understand the basis of MSP-photosystem II interactions, the role of threonine residues in the highly conserved motifs T(Y/F)DE and TY has been characterized. Deletion mutants lacking the first 5, 6, 7, and 15 amino acid residues at the N-terminus of the protein were examined for their ability to reconstitute activity in MSP-depleted photosystem II. The results reported here show that truncations of five and six amino acid residues (mutants DeltaR5M and DeltaL6M mutants) have no negative effect on recovery of oxygen evolution activity or on binding of MSP to photosystem II. Deletion of seven residues (mutant DeltaT7M) decreases reconstitution activity to 40% of the control value and reduces functional binding of the mutant protein to photosystem II from two to one copy. Deletion of 15 amino acid residues (mutant DeltaT15M) severely impairs functional binding of MSP, and lowers O(2) evolution activity to less than 20% of the control. DeltaT7M is the only mutant that exhibited neither nonspecific binding to photosystem II nor changes in tertiary structure. These, and previous results, show that the highly conserved Thr7 and Thr15 residues of MSP are required for functional binding of two copies of the eukaryotic protein to photosystem II. Although the N-terminal domains, (1)EGGKR(6)L, (8)YDEIQS(14)K, and (16)YL(18)E of spinach MSP are unnecessary for specific, functional binding interactions, these sequences are necessary to prevent nonspecific binding of the protein to photosystem II.  相似文献   

8.

Main conclusion

MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.  相似文献   

9.
In the last few years various advances have contributed to an increased understanding of Photosystem II (PS II). Most notably, the X-ray diffraction analysis of crystallized bacterial reaction centers, along with the recognition that there is functional and structural homology between the bacterial reaction center and PS II, has led to detailed information regarding the potential function of individual proteins and residues in the PS II complex. In-depth studies of PS II structure and function, however, require the availability of specific mutants in which certain proteins have been altered. Recombinant DNA technology has provided the methodology by which generation of such mutants has become feasible. This minireview focuses on methods for mutagenesis of PS II components and on the impact of mutant analysis on the understanding of PS II structure and function.  相似文献   

10.
We have characterized the stability and folding behavior of the isolated extrinsic PsbQ protein of photosystem II (PSII) from a higher plant, Spinacia oleracea, using intrinsic protein fluorescence emission and near- and far-UV circular dichroism (CD) spectroscopy in combination with differential scanning calorimetry (DSC). Experimental results reveal that both chemical denaturation using guanidine hydrochloride (GdnHCl) and thermal unfolding of PsbQ proceed as a two-state reversible process. The denaturation free-energy changes (DeltaG(D)) at 20 degrees C extrapolated from GdnHCl (4.0 +/- 0.6 kcal mol(-1)) or thermal unfolding (4.4 +/- 0.8 kcal mol(-1)) are very close. Moreover, the far-UV CD spectra of the denatured PsbQ registered at 90 degrees C in the absence and presence of 6.0 M GdnHCl superimpose, leading us to conclude that both denatured states of PsbQ are structurally and energetically similar. The thermal unfolding of PsbQ has been also characterized by CD and DSC over a wide pH range. The stability of PsbQ is at its maximum at pH comprised between 5 and 8, being wider than the optimal pH for oxygen evolution in the lumen of thylakoid membranes. In addition, no significant structural changes were detected in PsbQ between 50 and 55 degrees C in the pH range of 3-8, suggesting that PsbQ behaves as a soluble and stable particle in the lumen when it detaches from PSII under physiological stress conditions such as high temperature (45-50 degrees C) or low pH (<5.0). Sedimentation experiments showed that, in solution at 20 degrees C, the PsbQ protein is a monomer with an elongated shape.  相似文献   

11.
This paper addresses the question of whether the PsbS protein of photosystem two (PS II) is located within the LHC II PS II supercomplex for which a three-dimensional structure has been obtained by cryoelectron microscopy and single particle analysis. The PsbS protein has recently been implicated as the site for non-photochemical quenching. Based both on immunoblotting analyses and structural considerations of an improved model of the spinach LHC II PS II supercomplex, we conclude that the PsbS protein is not located within the supercomplex. Analyses of other fractions resulting from the solubilization of PS Il-enriched membranes derived from spinach suggest that the PsbS protein is located in the LHC II-rich regions that interconnect the supercomplex within the membrane.  相似文献   

12.
The interaction between alpha-chymotrypsin [EC 3.4.21.1] and peptide substrate or peptide inhibitor was investigated to determine how the secondary interaction influences the rate of hydrolysis or the binding and whether or not its effect is variable with alteration of the P1 residue which interacts with the specificity determining site of the enzyme. Kinetic analysis was carried out at pH 6.5 and 7.8 for substrates of the type Ac-Glyn-X-OMe and for inhibitors of the type Ac-Glyn-X-OH where X denotes tryptophan or its derivatives. With substrates containing tryptophan or Nin-formyltryptophan, the second-order rate of hydrolysis increases with increase of chain length. With substrates containing 2-(2-nitro-4-carboxyphenylsulfenyl)-tryptophan, however, the rate of hydrolysis decreases with elongation of the chain, due to an increase in Km(app). The corresponding inhibitors behave differently from the other series of inhibitors at pH 6.5. The results indicate that the influence of the secondary interaction on reactivity or binding is related to the structural features of the P1 residue.  相似文献   

13.
Grana are not essential for photosynthesis, yet they are ubiquitous in higher plants and in the recently evolved Charaphyta algae; hence grana role and its need is still an intriguing enigma. This article discusses how the grana provide integrated and multifaceted functional advantages, by facilitating mechanisms that fine-tune the dynamics of the photosynthetic apparatus, with particular implications for photosystem II (PSII). This dynamic flexibility of photosynthetic membranes is advantageous in plants responding to ever-changing environmental conditions, from darkness or limiting light to saturating light and sustained or intermittent high light. The thylakoid dynamics are brought about by structural and organizational changes at the level of the overall height and number of granal stacks per chloroplast, molecular dynamics within the membrane itself, the partition gap between appressed membranes within stacks, the aqueous lumen encased by the continuous thylakoid membrane network, and even the stroma bathing the thylakoids. The structural and organizational changes of grana stacks in turn are driven by physicochemical forces, including entropy, at work in the chloroplast. In response to light, attractive van der Waals interactions and screening of electrostatic repulsion between appressed grana thylakoids across the partition gap and most probably direct protein interactions across the granal lumen (PSII extrinsic proteins OEEp-OEEp, particularly PsbQ-PsbQ) contribute to the integrity of grana stacks. We propose that both the light-induced contraction of the partition gap and the granal lumen elicit maximisation of entropy in the chloroplast stroma, thereby enhancing carbon fixation and chloroplast protein synthesizing capacity. This spatiotemporal dynamic flexibility in the structure and function of active and inactive PSIIs within grana stacks in higher plant chloroplasts is vital for the optimization of photosynthesis under a wide range of environmental and developmental conditions.  相似文献   

14.
Electron paramagnetic resonance (EPR) spectroscopy is a valuable tool for understanding the oxidation state and chemical environment of the Mn4Ca cluster of photosystem II. Since the discovery of the multiline signal from the S2 state, EPR spectroscopy has continued to reveal details about the catalytic center of oxygen evolution. At present EPR signals from nearly all of the S-states of the Mn4Ca cluster, as well as from modified and intermediate states, have been observed. This review article describes the various EPR signals obtained from the Mn4Ca cluster, including the metalloradical signals due to interaction of the cluster with a nearby organic radical.  相似文献   

15.
16.
We examined the microenvironment of the single tryptophan and the tyrosine residues of PsbQ, one of the three main extrinsic proteins of green algal and higher plant photosystem II. On the basis of this information and the previous data on secondary structure [Balsera, M., Arellano, J.B., Gutiérrez, J.R., Heredia, P., Revuelta, J.L. & De Las Rivas, J. (2003) Biochemistry42, 1000-1007], we screened structural models derived by combining various threading approaches. Experimental results showed that the tryptophan residue is partially buried in the core of the protein but still in a polar environment, according to the intrinsic fluorescence emission of PsbQ and the fact that fluorescence quenching by iodide was weaker than that by acrylamide. Furthermore, quenching by cesium suggested that a positively charged barrier shields the tryptophan microenvironment. Comparison of the absorption spectra in native and denaturing conditions indicated that one or two out of six tyrosines of PsbQ are buried in the core of the structure. Using threading methods, a 3D structural model was built for the C-terminal domain of the PsbQ protein family (residues 46-149), while the N-terminal domain is predicted to have a flexible structure. The model for the C-terminal domain is based on the 3D structure of cytochrome b562, a mainly alpha-protein with a helical up/down bundle folding. Despite the large sequence differences between the template and PsbQ, the structural and energetic parameters for the explicit model are acceptable, as judged by the corresponding tools. This 3D model is compatible with the experimentally determined environment of the tryptophan residue and with published structural information. The future experimental determination of the 3D structure of the protein will offer a good validation point for our model and the technology used. Until then, the model can provide a starting point for further studies on the function of PsbQ.  相似文献   

17.
18.
Reactivation of 02 evolution function has been studied in PS-2 particles after complete removal of Mn and water soluble 10, 17, 24, 33 kDa proteins, It has been shown that 02 evolution function in such particles can be reactivated by adding 5 μM Mn2 and 20 mM Ca2(+). Preliminary illumination of the sample is necessary to exhibit the reactivation effect of 02 evolution. The maximum value of the reactivation of 02 evolution rate is about 60% of the control. Upon illumination of the reactivated particles with flashes of 1s duration and at a frequency of 0,1 Hz, 02 evolution occurs according to the mechanism analogous to that in the initial parties of PS 2. Thus the reactivation of water oxidation and 02 evolution after complete removal of Mn and water soluble 10, 17, 24, 33 kDa proteins resulting in the suppression of 02 evolution function has been shown for the first time and it can serve as a basic approach for profound investigation of the mechanism of photosynthetic water oxidation.  相似文献   

19.
The structure of photosystem I at 3.8 A resolution illustrated the main structural elements of the water-oxidizing photosystem II complex, including the constituents of the electron transport chain. The location of the Mn cluster within the complex has been identified for the first time to our knowledge. At this resolution, no individual atoms are visible, however, the electron density of the Mn cluster can be used to discuss both the present models of the Mn cluster as revealed from various spectroscopic methods and the implications for the mechanisms of water oxidation. Twenty-six chlorophylls from the antenna system of photosystem II have been identified. They are arranged in two layers, one close to the stromal side and one close to the lumenal side. Comparing the structure of the antenna system of photosystem II with the chlorophyll arrangement in photosystem I, which was recently determined at 2.5 A resolution shows that photosystem II lacks the central domain of the photosystem I antenna, which is discussed in respect of the repair cycle of photosystem II due to photoinhibition.  相似文献   

20.
Popelkova H  Im MM  Yocum CF 《Biochemistry》2002,41(31):10038-10045
Manganese stabilizing protein (MSP) is an intrinsically disordered extrinsic subunit of photosystem II that regulates the stability and kinetic performance of the tetranuclear manganese cluster that oxidizes water to oxygen. An earlier study showed that deletion of the (1)E-(3)G domain of MSP caused no loss of activity reconstitution, whereas deletion of the (4)K-(10)E domain reduced binding of the protein from 2 to 1 mol of MSP/mol of photosystem II and lowered activity reconstitution to about 50% of the control value [Popelkova et al. (2002) Biochemistry 41, 2702-2711]. In this work we present evidence that deletion of 13 or 14 amino acid residues from the MSP N-terminus (mutants DeltaS13M and DeltaK14M) does not interfere either with functional binding of one copy of MSP to photosystem II or with reconstitution of oxygen evolution activity to 50% of the control level. Both of these mutants exhibit nonspecific binding to photosystem II at higher protein concentrations. Truncation of the MSP sequence by 18 amino acids (mutant DeltaE18M), however, causes a loss of protein binding and activity reconstitution. This result demonstrates that the N-terminal domain (15)T-(18)E is required for binding of at least one copy of MSP to photosystem II. Analyses of CD spectra reveal changes in the structure of DeltaE18M (loss of beta-sheet, gain of unordered structure). Use of the information gained from these experiments in analyses of N-terminal sequences of MSP from a number of species indicates that higher plants and algae possess two recognition domains that are required for MSP binding to PSII, whereas cyanobacteria lack the first N-terminal domain found in eukaryotes. This may explain the absence of a second copy of MSP in the crystal structure of PSII from Synechococcus elongatus [Zouni et al. (2001) Nature 409, 739-743].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号