首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the effect of the introduction of a disulfide bond on the stability of Escherichia coli ribonuclease H, a disulfide bond was engineered between Cys13, which is present in the wild-type enzyme, and Cys44, which is substituted for Asn44 by site-directed mutagenesis. The disulfide bond was only formed between these residues upon oxidation in vitro with redox buffer. The conformational and thermal stabilities were estimated from the guanidine hydrochloride and thermal denaturation curves, respectively. The oxidized (cross-linked) mutant enzyme showed a Tm of 62.3 degrees C, which was 11.8 degrees C higher than that observed for the wild-type enzyme. The free energy change of unfolding in the absence of denaturant, delta G[H2O], and the mid-point of the denaturation curve, [D]1/2, of the oxidized mutant enzyme were also increased by 2.1-2.8 kcal/mol and 0.36-0.48 M, respectively. Introduction of a disulfide bond thus greatly enhanced both the thermal and conformational stabilities of the enzyme. In addition, kinetic analyses for the enzymatic activities of mutant enzymes suggest that Thr43 and Asn44 are involved in the substrate-binding site of the enzyme.  相似文献   

2.
J Eder  M Wilmanns 《Biochemistry》1992,31(18):4437-4444
A disulfide bond has been introduced in the beta/alpha-barrel enzyme N-(5'-phosphoribosyl)anthranilate isomerase from Saccharomyces cerevisiae. The design of this disulfide bond was based on a model structure of this enzyme, built from the high-resolution crystal structure of the N-(5'-phosphoribosyl)anthranilate isomerase domain from Escherichia coli. The disulfide cross-link is spontaneously formed in vitro between residues 27 and 212, located in the structurally adjacent alpha-helices 1 and 8 of the outer helical ring of the beta/alpha-barrel. It creates a loop of 184 residues that account for 83% of the sequence of this enzyme, thus forming a quasi circular protein. The cross-linked mutant enzyme displays wild-type steady-state kinetic parameters. Measurements of the equilibrium constant for the reduction of this disulfide bond by 1,4-dithiothreitol show that its bond strength is comparable to that of other engineered protein disulfide bonds. The oxidized, cross-linked N-(5'-phosphoribosyl)anthranilate isomerase mutant is about 1.0 kcal/mol more stable than the wild-type enzyme, as estimated from its equilibrium unfolding transitions by guanidine hydrochloride.  相似文献   

3.
While beta-propeller phytases (BPPs) from Gram-positive bacteria do not carry disulfide bonding, their counterparts from Gram-negative bacteria contain cysteine residues that may form disulfide bonds. By molecular modeling, two amino acid residues of B. subtilis 168 phytase (168PhyA), Ser-161 and Leu-212, were mutated to cysteine residues. Although the double cysteine mutant was secreted from B. subtilis at an expression level that was 3.5 times higher than that of the wild type, the biochemical and enzymatic properties were unaltered. In CD spectrometric analysis, both enzymes exhibited similar apparent melting temperatures and mid-points of transition under thermal and guanidine hydrochloride induced denaturation, respectively. In enzyme assays, the mutant phytase exhibited a poor refolding ability after thermal denaturation. We postulate that the disulfide bond in BPP sequences from Gram-negative bacteria is beneficial to their stability in the periplasmic compartment. In contrast, the lack of periplasmic space in Bacillus species and the fact that Bacillus BPPs are released extracellularly may render disulfide bonds unnecessary. This may explain why in evolution, BPPs in Bacillus species do not carry disulfide bonds.  相似文献   

4.
We provide evidence that in vitro protein cross-linking can be accomplished in three concerted steps: (i) a change in protein conformation; (ii) formation of interchain disulfide bonds; and (iii) formation of interchain isopeptide cross-links. Oxidative refolding and thermal unfolding of ribonuclease A, lysozyme, and protein disulfide isomerase led to the formation of cross-linked dimers/oligomers as revealed by SDS-polyacrylamide gel electrophoresis. Chemical modification of free amino groups in these proteins or unfolding at pH < 7.0 resulted in a loss of interchain isopeptide cross-linking without affecting interchain disulfide bond cross-linking. Furthermore, preformed interchain disulfide bonds were pivotal for promoting subsequent interchain isopeptide cross-links; no dimers/oligomers were detected when the refolding and unfolding solution contained the reducing agent dithiothreitol. Similarly, the Cys326Ser point mutation in protein disulfide isomerase abrogated its ability to cross-link into homodimers. Heterogeneous proteins become cross-linked following the formation of heteromolecular interchain disulfide bonds during thermal unfolding of a mixture of of ribonuclease A and lysozyme. The absence of glutathione and glutathione disulfide during the unfolding process attenuated both the interchain disulfide bond cross-links and interchain isopeptide cross-links. No dimers/oligomers were detected when the thermal unfolding temperature was lower than the midpoint of thermal denaturation temperature.  相似文献   

5.
R C Lu  S S Lehrer 《Biochemistry》1984,23(25):5975-5981
The ability of 5,5'-dithiobis(2-nitrobenzoate) (Nbs2) to produce interchain disulfide cross-links in both the long and short forms of myosin subfragment 2 (S2) and the conformational effects of these cross-links have been investigated. Short S2 (residues 3-287) contains two pairs of Cys residues at positions 66 and 108, and long S2 (residues 1-440) contains an additional pair at position 410. The reaction kinetics of each form of S2 with Nbs2 was biphasic. During the fast kinetic phase the reaction resulted in un-cross-linked species having Nbs-blocked Cys. During the slow phase disulfide-cross-linked species were formed via interchain S-Nbs/SH exchange. For short S2, Cys-66 appeared to react without forming disulfide cross-links, and the Cys- 108 pair reacted with partial cross-linking. For long S2, the Cys-66 pair appeared to react with partial cross-linking, and the Cys pairs at 108 and 410 reacted with complete cross-linking. Mild tryptic digestion of disulfide-cross-linked long S2, under conditions that resulted in partial production of short S2 from un-cross-linked LS2, produced peptides T1a and T1b (residues 1 to approximately 360), with one and two disulfide cross-links, respectively. Further digestion of cross-linked long S2 or cross-linked short S2 resulted in the same shorter fragment, T2, with an NH2-terminus beginning at 103 consistent with a sequence of residues 103-287. Circular dichroism studies on long S2 indicated that the presence of disulfide cross-links changed the thermal unfolding profile of the helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
With the aim of enhancing interactions involved in dimer formation, an intersubunit disulfide bridge was engineered in the superoxide dismutase enzyme of Mycobacterium tuberculosis. Ser-123 was chosen for mutation to cysteine since it resides at the dimer interface where the serine side chain interacts with the same residue in the opposite subunit. Gel electrophoresis and X-ray crystallographic studies of the expressed mutant confirmed formation of the disulfide bond under nonreducing conditions. However, the mutant protein was found to be less stable than the wild type as judged by susceptibility to denaturation in the presence of guanidine hydrochloride. Decreased stability probably results from formation of a disulfide bridge with a suboptimal torsion angle and exclusion of solvent molecules from the dimer interface.  相似文献   

7.
The engineered disulfide bridge A23C/L203C in human carbonic anhydrase II, inserted from homology modeling of Neisseria gonorrhoeae carbonic anhydrase, significantly stabilizes the native state of the protein. The inserted cysteine residues are placed in the interior of the structure, and because of the conformationally restrained localization, the protein is expressed in the reduced state and the cysteines are not readily oxidized. However, upon exposure to low concentrations of denaturant (0.6 M guanidine hydrochloride), corresponding to the lower part of the denaturation curve for the first unfolding transition, the oxidation rate of correctly formed disulfide bridges was markedly increased. By entropy estimations it appears that the increased flexibility, induced by the denaturant, enables the cysteines to find each other and hence to form the disulfide bridge. The outlined strategy of facilitating formation of disulfide bonds by addition of adjusted concentrations of a denaturant should be applicable to other proteins in which engineered cysteine residues are located in nonideal conformations. Moreover, a S99C/V242C variant was constructed, in which the cysteine residues are located on the surface. In this mutant the disulfide bridge was spontaneously formed and the native state was considerably stabilized (midpoint concentration of unfolding was increased from 1.0 to 1.4 M guanidine hydrochloride).  相似文献   

8.
The introduction of a disulfide bond into the neutral protease from Bacillus stearothermophilus by the double mutation G8C/N60C had resulted in an extremely thermostable enzyme with a half-life of 35.9 min at 92.5 degrees C [Mansfeld, J., Vriend, G., Dijkstra, B.W., Veltman, O.R., van den Burg, B., Venema, G., Ulbrich-Hofmann, R. & Eijsink, V.G. (1997) J. Biol. Chem. 272, 11152-11156]. The study in guanidine hydrochloride of this enzyme and the respective wild-type enzyme allowed us to distinguish between the stability toward global unfolding and autoproteolysis. At low protease concentrations (20 microg.mL-1) and short periods of incubation with guanidine hydrochloride (5 min), transition curves without the interference by autoproteolysis could be derived from fluorescence emission measurements. The effect of the disulfide bond on the global unfolding of the protein proved to be smaller than expected. In contrast, the measurement of autoproteolysis at higher protein concentrations (100 microg.mL-1) by quantitative evaluation of the bands of intact protein on SDS/PAGE revealed a strong stabilization toward autoproteolytic degradation by the disulfide bond. The rate of autoproteolysis in guanidine hydrochloride was found to be much lower than that of thermal denaturation, which can be attributed to the inhibition of the proteases by this denaturant. The results suggest that the disulfide bond stabilizes the protease against autoproteolysis more than against global unfolding. Autoproteolysis starts as soon as the cleavage sites in flexible external structural regions become accessible. It is suggested that the stabilizing effect of the disulfide bond is caused by the fixation of the crucial loop region 56-69 or by hindrance of the primary cleavage in this region by the amino acid exchanges.  相似文献   

9.
Nucleoside hydrolases are metalloproteins that hydrolyze the N-glycosidic bond of β-ribonucleosides, forming the free purine/pyrimidine base and ribose. We report the stability of the two hyperthermophilic enzymes Sulfolobus solfataricus pyrimidine-specific nucleoside hydrolase (SsCU-NH) and Sulfolobus solfataricus purine-specific inosineadenosine- guanosine nucleoside hydrolase (SsIAG-NH) against the denaturing action of temperature and guanidine hydrochloride by means of circular dichroism and fluorescence spectroscopy. The guanidine hydrochloride-induced unfolding is reversible for both enzymes as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. The evidence that the denaturation of SsIAG-NH carried out in the presence of reducing agents proved to be reversible indicates that the presence of disulfide bonds interferes with the refolding process of this enzyme. Both enzymes are highly thermostable and no thermal unfolding transition can be obtained up to 108°C. SsIAG-NH is thermally denatured under reducing conditions (T(m)=93°C) demonstrating the contribution of disulfide bridges to enzyme thermostability.  相似文献   

10.
Azurin has a beta-barrel fold comprising eight beta-strands and one alpha helix. A disulfide bond between residues 3 and 26 connects the N-termini of beta strands beta1 and beta3. Three mutant proteins lacking the disulfide bond were constructed, C3A/C26A, C3A/C26I and a putative salt bridge (SB) in the C3A/S25R/C26A/K27R mutant. All three mutants exhibit spectroscopic properties similar to the wild-type protein. Furthermore, the crystal structure of the C3A/C26A mutant was determined at 2.0 A resolution and, in comparison to the wild-type protein, the only differences are found in the immediate proximity of the mutation. The mutants lose the 628 nm charge-transfer band at a temperature 10-22 degrees C lower than the wild-type protein. The folding of the zinc loaded C3A/C26A mutant was studied by guanidine hydrochloride (GdnHCl) induced denaturation monitored both by fluorescence and CD spectroscopy. The midpoint in the folding equilibrium, at 1.3 M GdnHCl, was observed using both CD and fluorescence spectroscopy. The free energy of folding determined from CD is -24.9 kJ.mol-1, a destabilization of approximately 20 kJ.mol-1 compared to the wild-type Zn2+-protein carrying an intact disulfide bond, indicating that the disulfide bond is important for giving azurin its stable structure. The C3A/C26I mutant is more stable and the SB mutant is less stable than C3A/C26A, both in terms of folding energy and thermal denaturation. The folding intermediate of the wild-type Zn2+-azurin is not observed for the disulfide-deficient C3A/C26A mutant. The rate of unfolding for the C3A/C26A mutant is similar to that of the wild-type protein, suggesting that the site of the mutation is not involved in an early unfolding reaction.  相似文献   

11.
Molecular dynamics simulations as a tool for improving protein stability   总被引:1,自引:0,他引:1  
Haloalkane dehalogenase (DhlA) was used as a model protein to explore the possibility to use molecular dynamics (MD) simulations as a tool to identify flexible regions in proteins that can serve as a target for stability enhancement by introduction of a disulfide bond. DhlA consists of two domains: an alpha/beta-hydrolase fold main domain and a cap domain composed of five alpha-helices. MD simulations of DhlA showed high mobility in a helix-loop-helix region in the cap domain, involving residues 184-211. A disulfide cross-link was engineered between residue 201 of this flexible region and residue 16 of the main domain. The mutant enzyme showed substantial changes in both thermal and urea denaturation. The oxidized form of the mutant enzyme showed an increase of the apparent transition temperature from 47.5 to 52.5 degrees C, whereas the T(m,app) of the reduced mutant decreased by more than 8 degrees C compared to the wild-type enzyme. Urea denaturation results showed a similar trend. Measurement of the kinetic stability showed that the introduction of the disulfide bond caused a decrease in activation free energy of unfolding of 0.43 kcal mol(-1) compared to the wild-type enzyme and also indicated that the helix-loop-helix region was involved early in the unfolding process. The results show that MD simulations are capable of identifying mobile protein domains that can successfully be used as a target for stability enhancement by the introduction of a disulfide cross-link.  相似文献   

12.
To assess the role of quaternary stability on the properties of Escherichia coli phosphofructokinase (PFK), a disulfide bond has been introduced across the subunit interface containing the allosteric binding sites in E. coli phosphofructokinase by changing N288 to cysteine. N288 is located in close proximity to the equivalent residue on an adjacent subunit. Although SDS-PAGE of oxidized N288C indicates monomeric protein, blocking the six native cysteine residues with N-ethyl maleimide (NEM) reveals dimers of N288C on non-native gels. Subsequent addition of dithiothreitol (DTT) to NEM-labeled N288C regenerates the monomer on SDS-PAGE, reflecting the reversibility of intersubunit disulfide bond formation. KSCN-induced hybrid formation between N288C and the charged-tagged mutant E195,199K exhibits full monomer-monomer exchange only upon DTT addition, providing a novel assessment of disulfide bond formation without NEM treatment. N288C also exhibits a diminished tendency toward nonspecific aggregation under denaturing conditions, a phenomenon associated with monomer formation in PFK. Pressure-induced dissociation and urea denaturation studies further indicate that oxidized N288C exhibits increased quaternary stability along both interfaces of the tetramer, suggesting a synergistic relationship between active site and allosteric site formation. Although the apparent binding affinities of substrates and effectors change somewhat upon disulfide formation in N288C, little difference is evident between the maximally inhibited and activated forms of the enzyme in oxidizing versus reducing conditions. Allosteric influence, therefore, is not correlated to subunit-subunit affinity, and does not involve substantial interfacial rearrangement.  相似文献   

13.
The H(+)-pyrophosphatase (H(+)-PPase) consists of a single polypeptide, containing 16 or 17 transmembrane domains. To determine the higher order oligomeric state of Streptomyces coelicolor H(+)-PPase, we constructed a series of cysteine substitution mutants and expressed them in Escherichia coli. Firstly, we analyzed the formation of disulfide bonds, promoted by copper, in mutants with single cysteine substitutions. 28 of 39 mutants formed disulfide bonds, including S545C, a substitution at the periplasmic side. The formation of intermolecular disulfide bonds suppressed the enzyme activity of several, where the substituted residues were located in the cytosol. Creating disulfide links in the cytosol may interfere with the enzyme's catalytic function. Secondly, we prepared double mutants by introducing second cysteine substitutions into the S545C mutant. These double-cysteine mutants produced cross-linked complexes, estimated to be at least tetramers and possibly hexamers. Thirdly, we co-expressed epitope-tagged, wild type, and inactive mutant H(+)-PPases in E. coli and confirmed the formation of oligomers by co-purifying one subunit using the epitope tag used to label the other. The enzyme activity of these oligomers was markedly suppressed. We propose that H(+)-PPase is present as an oligomer made up of at least two or three sets of dimers.  相似文献   

14.
Site-directed mutagenesis has been used to replace Tyr-88 at the dimer interface of the N-terminal domain of lambda repressor with cysteine. Computer model building had suggested that this substitution would allow formation of an intersubunit disulfide without disruption of the dimer structure [Pabo, C. O., & Suchanek, E. G. (1986) Biochemistry (preceding paper in this issue)]. We find that the Cys-88 protein forms a disulfide-bonded dimer that is very stable to reduction by dithiothreitol and has increased operator DNA binding activity. The covalent Cys88-Cys88' dimer is also considerably more stable than the wild-type protein to thermal denaturation or urea denaturation. As a control, Tyr-85 was replaced with cysteine. A Cys85-Cys85' disulfide cannot form without disrupting the wild-type structure, and we find that this disulfide bond reduces the DNA binding activity and stability of the N-terminal domain.  相似文献   

15.
The extremely heat-stable 5'-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and affinity chromatography. The recombinant enzyme was subjected to a kinetic analysis including initial velocity and product inhibition studies. The reaction follows an ordered Bi-Bi mechanism and phosphate binding precedes nucleoside binding in the phosphorolytic direction. 5'-Methylthioadenosine phosphorylase from Pyrococcus furiosus is a hexameric protein with five cysteine residues per subunit. Analysis of the fragments obtained after digestion of the protein alkylated without previous reduction identified two intrasubunit disulfide bridges. The enzyme is very resistant to chemical denaturation and the transition midpoint for guanidinium chloride-induced unfolding was determined to be 3.0 M after 22 h incubation. This value decreases to 2.0 M in the presence of 30 mM dithiothreitol, furnishing evidence that disulfide bonds are needed for protein stability. The guanidinium chloride-induced unfolding is completely reversible as demonstrated by the analysis of the refolding process by activity assays, fluorescence measurements and SDS/PAGE. The finding of multiple disulfide bridges in 5'-methylthioadenosine phosphorylase from Pyrococcus furiosus argues strongly that disulfide bond formation may be a significant molecular strategy for stabilizing intracellular hyperthermophilic proteins.  相似文献   

16.
Models of F-actin structure predict the importance of hydrophobic loop 262-274 at the interface of subdomains 3 and 4 to interstrand interactions in filaments. If this premise is correct, prevention of the loop conformational change--its swinging motion--should abort filament formation. To test this hypothesis, we used site-directed mutagenesis to create yeast actin triple mutant (LC)2CA (L180C/L269C/C374A). This mutation places two cysteine residues in positions potentially enabling the locking of loop 262-274 to the monomer surface via disulfide formation. Exposure of the purified mutant to oxidation catalysts resulted in an increased electrophoretic mobility of actin on SDS PAGE and a loss of two cysteines by DTNB titrations, consistent with disulfide formation. The polymerization of un-cross-linked mutant actin by MgCl2 was inhibited strongly but could be restored to wild type actin levels by phalloidin and improved greatly through copolymerization with the wild-type actin. Light scattering measurements revealed nonspecific aggregation of the cross-linked actin under the same conditions. Electron microscopy confirmed the absence of filaments and the presence of amorphous aggregates in the cross-linked actin samples. Reduction of the disulfide bond by DTT restored normal actin polymerization in the presence of MgCl2 and phalloidin. These observations provide strong experimental support for a critical role of the hydrophobic loop 262-274 in the polymerization of actin into filaments.  相似文献   

17.
The two Cu,Zn superoxide dismutases from the amphibian Xenopus laevis (denoted XSODA and XSODB) display different heat sensitivities, XSODA being more thermolabile than XSODB. In this study, we have investigated the contribution of a free cysteine residue located close to the subunit interface of XSODA to its lower thermal stability. We have found that mutation of residue Cys 150 to Ala in XSODA makes the thermal stability of this enzyme comparable to that of the wild-type XSODB isoenzyme, while the introduction of a cysteine residue in the same position of XSODB renders this enzyme variant much more heat-sensitive. Differential scanning calorimetry experiments showed that XSODA has a melting temperature about 8.5 degrees C lower than that of XSODB. On the contrary, the melting temperature of XSODACys150Ala is very close to that of XSODB, while the melting temperature of XSODBSer150Cys is even lower than that of wild-type XSODA. These data indicate that the free cysteine residue present in XSODA affects not only the reversibility of unfolding of the enzyme but also its conformational stability. We suggest that the large effect of the Cys 150 residue on XSODA stability might be due to incorrect disulfide bond formation or disulfide bond interchange during heat-induced unfolding rather than to alteration of the interaction between the enzyme subunits.  相似文献   

18.
To find a disulfide pair that could stabilize the enzyme human carbonic anhydrase II (HCA II), we grafted the disulfide bridge from the related and unusually stable carbonic anhydrase form from Neisseria gonorrhoeae (NGCA) into the human enzyme. Thus, the two Cys residues at positions 23 and 203 were engineered into a pseudo-wild-type form of HCA II (C206S), giving the mutant C206S/A23C/L203C. The disulfide bond was not formed spontaneously. The native state of the reduced form of the mutant was markedly destabilized (2.9 kcal/mol) compared to that of HCA II. Formation of a disulfide bridge was achieved by treatment by oxidized glutathione. This led to a significant stabilization of the native conformation. Compared to HCA II the unfolding midpoint for the variant was increased from 0.9 to 1.7 M guanidine HCl, corresponding to a stabilization of 3.7 kcal/mol. This makes the human enzyme almost as stable as the model protein NGCA, for which the unfolding of the native state has a midpoint at 2.1 M guanidine HCl. The stabilized protein underwent, contrary to all other investigated variants of HCA II, an apparent two-state unfolding transition, as judged from intrinsic Trp fluorescence measurements. A molten-globule intermediate is nevertheless formed but is suppressed because of the high denaturant pressure it faces upon rupture of the native state.  相似文献   

19.
The production of class A beta-lactamases is a major cause of clinical resistance to beta-lactam antibiotics. Some of class A beta-lactamases are known to have a disulfide bridge. Both narrow spectrum and extended spectrum beta-lactamases of TEM and the SHV enzymes possess a disulfide bond between Cys77 and Cys123, and the enzymes with carbapenem-hydrolyzing activity have a well-conserved disulfide bridge between Cys69 and Cys238. We produced A77C/G123C mutant of the extended-spectrum beta-lactamase Toho-1 in order to introduce a disulfide bond between the cysteine residues at positions 77 and 123. The result of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) titrations confirmed formation of a new disulfide bridge in the mutant. The results of irreversible heat inactivation and circular dichroism (CD) melting experiments indicated that the disulfide bridge stabilized the enzyme significantly. Though kinetic analysis indicated that the catalytic properties of the mutant were quite similar to those of the wild-type enzyme, E. coli producing this mutant showed drug resistance significantly higher than E. coli producing the wild-type enzyme. We speculate that the stability of the enzymes provided by the disulfide bond may explain the wide distribution of TEM and SHV derivatives and explain how various mutations can cause broadened substrate specificity without loss of stability.  相似文献   

20.
Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. After propeptide-mediated folding in the periplasm, the proenzyme is autoproteolytically processed, prior to translocation of both the mature enzyme and the propeptide across the outer membrane. The formation of the two disulfide bonds present in the mature enzyme was examined by studying the expression of the wild-type enzyme and of alanine for cysteine mutant derivatives in the authentic host and in dsb mutants of Escherichia coli. It appeared that the two disulfide bonds are formed successively. First, DsbA catalyzes the formation of the disulfide bond between Cys-270 and Cys-297 within the proenzyme. This step is essential for the subsequent autoproteolytic processing to occur. The second disulfide bond between Cys-30 and Cys-57 is formed more slowly and appears to be formed after processing of the proenzyme, and its formation is catalyzed by DsbA as well. This second disulfide bond appeared to be required for the full proteolytic activity of the enzyme and contributes to its stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号