首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Background

Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain.

Methodology/Principal Findings

To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish.

Conclusions/Significance

We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.  相似文献   

2.
Accurate lineage tracing is crucial to understanding of developmental and stem cell biology, but is particularly challenging for transient and highly dispersive cell‐types like the neural crest (NC). The authors report in this article a new zebrafish transgenic line Tg(‐4725sox10:Cre)ba74. This line expresses Cre under the control of a well‐characterized portion of the sox10 promoter and, by crossing to a floxed‐reporter line, the authors show in this article that expression in this line is consistent with those described for GFP reporter lines using the same promoter. Reporter expression is readily detected in patterns consistent with the early expression domains. Thus, the authors see all major groups (pigment, neural, and skeletal) of NC‐derived cell‐types, as well as cell‐types derived from the known non‐NC sites of sox10 expression, including otic epithelium and oligodendrocytes. This line provides an invaluable tool for the further study of zebrafish NC development and NC‐derived stem cells as well as that of the otic vesicle and oligodendrocytes. genesis 50:750–757, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Molecular genetics approaches in zebrafish research are hampered by the lack of a ubiquitous transgene driver element that is active at all developmental stages. Here, we report the isolation and characterization of the zebrafish ubiquitin (ubi) promoter, which drives constitutive transgene expression during all developmental stages and analyzed adult organs. Notably, ubi expresses in all blood cell lineages, and we demonstrate the application of ubi-driven fluorophore transgenics in hematopoietic transplantation experiments to assess true multilineage potential of engrafted cells. We further generated transgenic zebrafish that express ubiquitous 4-hydroxytamoxifen-controlled Cre recombinase activity from a ubi:cre(ERt2) transgene, as well as ubi:loxP-EGFP-loxP-mCherry (ubi:Switch) transgenics and show their use as a constitutive fluorescent lineage tracing reagent. The ubi promoter and the transgenic lines presented here thus provide a broad resource and important advancement for transgenic applications in zebrafish.  相似文献   

4.
We have generated a transgenic mouse that expresses Cre recombinase only in skeletal muscle and only following tetracycline treatment. This spatiotemporal specificity is achieved using two transgenes. The first transgene uses the human skeletal actin (HSA) promoter to drive expression of the reverse tetracycline‐controlled transactivator (rtTA). The second transgene uses a tetracycline responsive promoter to drive the expression of Cre recombinase. We monitored transgene expression in these mice by crossing them with ROSA26 loxP‐LacZ reporter mice, which express β‐galactosidase when activated by Cre. We find that the expression of this transgene is only detectable within skeletal muscle and that Cre expression in the absence of tetracycline is negligible. Cre is readily induced in this model with tetracycline analogs at a range of embryonic and postnatal ages and in a pattern consistent with other HSA transgenic mice. This mouse improves upon existing transgenic mice in which skeletal muscle Cre is expressed throughout development by allowing Cre expression to begin at later developmental stages. This temporal control of transgene expression has several applications, including overcoming embryonic or perinatal lethality due to transgene expression. This mouse is especially suited for studies of steroid hormone action, as it uses tetracycline, rather than tamoxifen, to activate Cre expression. In summary, we find that this transgenic induction system is suitable for studies of gene function in the context of hormonal regulation of skeletal muscle or interactions between muscle and motoneurons in mice. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

5.
We used the 500-bp Xenopus ef1-alpha promoter and the 2-kb zebrafish histone 2A.F/Z promoter to generate several independent transgenic zebrafish lines expressing EGFP. While both promoters drive ubiquitous EGFP expression in early zebrafish development, they are systematically silenced in several adult tissues, including the retina and caudal fin. However, EGFP expression is temporarily renewed in the adult during either caudal fin or retinal regeneration. In the Tg(H2A.F/Z:EGFP)nt line, EGFP is moderately expressed in both the wound epithelium and blastema of the regenerating caudal fin. In the Tg(ef1-alpha:EGFP)nt line, EGFP expression is reinitiated and restricted to the blastema of the regenerating caudal fin and colabels with BrdU, PCNA, and msxc-positive cells. Thus, these two ubiquitous promoters drive EGFP transgene expression in different cell populations during caudal fin regeneration. We further analyzed the ability of the ef1-alpha:EGFP transgene to label nonterminally differentiated cells during adult tissue regeneration. First, we demonstrated that the transgene is highly methylated in adult zebrafish caudal fin tissue, but not during fin regeneration, implicating methylation as a potential means of transgene silencing in this line. Next, we determined that the ef1-alpha:EGFP transgene is also re-expressed during adult retinal regeneration. Specifically, the ef1-alpha:EGFP transgene colabels with PCNA in the Müller glia, a specialized cell that is the source of neuronal progenitors during zebrafish retinal regeneration. Thus, we concluded that Tg(ef1-alpha:EGFP)nt line visually marks nonterminally differentiated cells in multiple adult regeneration environments and may prove to be a useful marker in tissue regeneration studies in zebrafish.  相似文献   

6.
Maintenance of pluripotency in stem cells is tightly regulated among vertebrates. One of the key genes in this process is oct4, also referred to as pou5f1 in mammals and pou2 in teleosts. Pou5f1 evolved by duplication of pou2 early in the tetrapod lineage, but only monotremes and marsupials retained both genes. Either pou2 or pou5f1 was lost from the genomes of the other tetrapods that have been analyzed to date. Consequently, these two homologous genes are often designated oct4 in functional studies. In most vertebrates oct4 is expressed in pluripotent cells of the early embryo until the blastula stage, and later persist in germline stem cells until adulthood. The isolation and analysis of stem cells from embryo or adult individuals is hampered by the need for reliable markers that can identify and define the cell populations. Here, we report the faithful expression of EGFP under the control of endogenous pou2/oct4 promoters in transgenic medaka (Oryzias latipes). In vivo imaging in oct4‐EGFP transgenic medaka reveals the temporal and spatial expression of pou2 in embryos and adults alike. We describe the temporal and spatial patterns of endogenous pou2 and oct4‐EGFP expression in medaka with respect to germline and adult stem cells, and discuss applications of oct4‐EGFP transgenic medaka in reproductive and stem cell biology. Mol. Reprod. Dev. 80: 48–58, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
We developed a conditional and inducible gene knockout methodology that allows effective gene deletion in mouse cardiomyocytes. This transgenic mouse line was generated by coinjection of two transgenes, a “reverse” tetracycline‐controlled transactivator (rtTA) directed by a rat cardiac troponin T (Tnnt2) promoter and a Cre recombinase driven by a tetracycline‐responsive promoter (TetO). Here, Tnnt2‐rtTA activated TetO‐Cre expression takes place in cardiomyocytes following doxycycline treatment. Using two different mouse Cre reporter lines, we demonstrated that expression of Cre recombinase was specifically and robustly induced in the cardiomyocytes of embryonic or adult hearts following doxycycline induction, thus, allowing cardiomyocyte‐specific gene disruption and lineage tracing. We also showed that rtTA expression and doxycycline treatment did not compromise cardiac function. These features make the Tnnt2‐rtTA;TetO‐Cre transgenic line a valuable genetic tool for analysis of spatiotemporal gene function and cardiomyocyte lineage tracing during developmental and postnatal periods. genesis 48:63–72, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.  相似文献   

9.
In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta‐actin promoter. The aNLS‐EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time‐lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka.  相似文献   

10.
Two commonly used promoters to ubiquitously express transgenes in zebrafish are the Xenopus laevis elongation factor 1 α promoter (XlEef1a1) and the zebrafish histone variant H2A.F/Z (h2afv) promoter. Recently, transgenes utilizing these promoters were shown to be silenced in certain adult tissues, particularly the central nervous system. To overcome this limitation, we cloned the promoters of four zebrafish genes that likely are transcribed ubiquitously throughout development and into the adult. These four genes are the TATA box binding protein gene, the taube nuss-like gene, the eukaryotic elongation factor 1-gamma gene, and the beta-actin-1 gene. We PCR amplified approximately 2.5 kb upstream of the putative translational start site of each gene and cloned each into a Tol2 expression vector that contains the EGFP reporter transgene. We used these four Tol2 vectors to independently generate stable transgenic fish lines for analysis of transgene expression during development and in the adult. We demonstrated that all four promoters drive a very broad pattern of EGFP expression throughout development and the adult. Using the retina as a well-characterized component of the CNS, all four promoters appeared to drive EGFP expression in all neuronal and non-neuronal cells of the adult retina. In contrast, the h2afv promoter failed to express EGFP in the adult retina. When we examined EGFP expression in the various cells of the blood cell lineage, we observed that all four promoters exhibited a more heterogenous expression pattern than either the XlEef1a1 or h2afv promoters. While these four ubiquitous promoters did not express EGFP in all the adult blood cells, they did express EGFP throughout the CNS and in broader expression patterns in the adult than either the XlEef1a1 or h2afv promoters. For these reasons, these four promoters will be valuable tools for expressing transgenes in adult zebrafish.  相似文献   

11.
12.
Zebrafish transgenic lines provide valuable insights into gene functions, cell lineages and cell behaviors during development. Spatiotemporal control over transgene expression is a critical need in many experimental approaches, with applications in loss- and gain-of-function expression, ectopic expression and lineage tracing experiments. The Cre/loxP recombination system is a powerful tool to provide this control and the demand for validated Cre and loxP zebrafish transgenics is high. One of the major challenges to widespread application of Cre/loxP technology in zebrafish is comparatively small numbers of established tissue-specific Cre or CreERT2 lines. We used Tol2-mediated transgenesis to generate Tg(CrymCherry;-1.9mylz2:CreERT2) which provides an inducible CreERT2 source driven by muscle-specific mylz2 promoter. The transgenic specifically labels the trunk and tail skeletal muscles. We assessed the temporal responsiveness of the transgenic by screening with a validated loxP reporter transgenic ubi:Switch. Further, we evaluated the recombination efficiency in the transgenic with varying concentrations of 4-OHT, for different induction time periods and at different stages of embryogenesis and observed that higher recombination efficiency is achieved when embryos are induced with 10 μM 4-OHT from 10-somites or 24 hpf till 48 or 72 hpf. The transgenic is an addition to currently available zebrafish transgenesis toolbox and a significant tool to advance muscle biology studies in zebrafish.  相似文献   

13.
As a dual function protein, β‐catenin affects both cell adhesion and mediates canonical Wnt/β‐catenin cell signaling. β‐Catenin is prominently expressed in somatic Sertoli cells in the testis and postmeiotic germ cells, suggesting an additional role in spermatogenesis. It was reported previously that Cre/loxP‐mediated conditional inactivation of the β‐catenin gene (Ctnnb1) in male gonads using a protamine promoter‐driven Cre transgene (Prm‐cre) resulted in partial infertility, reduced sperm count, and abnormal spermatogenesis. In this report, we demonstrated that the conditional deletion of Ctnnb1 using a germ cell specific Cre transgene (Stra8‐icre) had no effect on male fertility. We have shown that the Stra8‐icre transgene was highly efficient in generating deletion in early pre‐meiotic and post‐meiotic cells. No differences in anatomical or histological presentation were found in the mutant testis, the production of viable sperm was similar, and no abnormalities in DNA sperm content were detected. We concluded that β‐catenin is fully dispensable in germ cells for spermatogenesis. The conflicting results from the earlier study may have been due to off‐target expression of Prm‐cre in testicular somatic cells. In future studies, the analysis of conditional mutants using several Cre‐transgenes should be encouraged to reduce potential errors. genesis 52:328–332, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
We established three lines of transgenic medaka, a heat‐shock element (HSE) monitor line (hse‐GFP line), heat‐inducible driver lines (hse‐cre lines), and effector lines (gapdh‐loxP[DsRed]‐GFP lines). We employed these to comprehensively analyze gene induction at different time points in various tissues. These analyses demonstrate a good response of synthetic HSEs by heat treatment during embryogenesis and the mosaic gene induction by cre/loxP‐mediated recombination, thus providing practical information regarding the feasibility of a heat‐inducible cre/loxP‐mediated system in medaka. We also activated recombination by local heat‐treatment using a metal probe and an infrared laser. Our results collectively indicate that these lines allow us to perform lineage tracing and mosaic analysis and provide the platform to investigate gene functions at later developmental stage and adult. genesis 51:59–67, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Single nucleotide polymorphisms (SNPs) in the human type A gamma‐aminobutyric acid (GABA) receptor β2 subunit gene (GABRB2) have been associated with schizophrenia and quantitatively correlated with mRNA expression in the postmortem brain tissue of patients with schizophrenia. l ‐Methionine (MET) administration has been reported to cause a recrudescence of psychotic symptoms in patients with schizophrenia, and similar symptoms have been generated in MET‐induced mice. In this study, a zebrafish animal model was used to evaluate the relationship between the gabrb2 mRNA expression and its promoter DNA methylation in developmental and MET‐induced schizophrenia‐like zebrafish. The results indicated developmental increases in global DNA methylation and decreases in gabrb2 promoter methylation in zebrafish. A significant increase in gabrb2 mRNA levels was observed after GABA was synthesized. Additionally, the MET‐triggered schizophrenia‐like symptoms in adult zebrafish, involving social withdrawal and cognitive dysfunction analyzed with social interaction and T‐maze behavioral tests, were accompanied by significantly increased DNA methylation levels in the global genome and the gabrb2 promoter. Furthermore, the significant correlation between gabrb2 mRNA expression and gabrb2 promoter methylation observed in the developmental stages became non‐significant in MET‐triggered adult zebrafish. These findings demonstrate that gabrb2 mRNA expression is associated with DNA methylation varies by developmental stage and show that these epigenetic association mechanisms are disrupted in MET‐triggered adult zebrafish with schizophrenia‐like symptoms. In conclusion, these results provide plausible epigenetic evidence of the GABAA receptor β2 subunit involvement in the schizophrenia‐like behaviors and demonstrate the potential use of zebrafish models in neuropsychiatric research.  相似文献   

16.
P0‐Cre and Wnt1‐Cre mouse lines have been widely used in combination with loxP‐flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1‐Cre has been regarded as the gold standard and there have been concerns about the specificity of P0‐Cre because it is not clear about the timing and spatial distribution of the P0‐Cre transgene in labeling NC cells at early embryonic stages. We re‐visited P0‐Cre and Wnt1‐Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26‐lacZ Cre reporter responded to Cre activity more reliably than CAAG‐lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0‐Cre and reporter (lacZ and RFP ) activity in P0‐Cre/R26‐lacZ and P0‐Cre/R26‐RFP embryos was detected in the cranial NC and notochord regions in E8.0–9.5 (4–19 somites) embryos. P0‐Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0‐Cre and Wnt1‐Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1‐Cre and in the hindbrain of P0‐Cre embryos. The difference between P0‐Cre and Wnt1‐Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre‐driven genetic modifications.  相似文献   

17.
Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.  相似文献   

18.
The recent widespread application of Cre/loxP technology has resulted in a new generation of conditional animal models that can better recapitulate many salient features of human disease. These models benefit from the ability to monitor the expression and functionality of Cre protein. We have generated a conditional (Cre/loxP dependent) LacZ reporter rat (termed the LacZ541 rat) to monitor Cre in transgenic rats. When LacZ541 rats were bred with another transgenic rat line expressing Cre recombinase under the control of the CAG promoter, LacZ/Cre double transgenic embryos displayed ubiquitous expression of LacZ, and when LacZ541 rats were bred with transgenic rats expressing Cre/loxP‐dependent oncogenic H‐ or K‐ras, LacZ was expressed in the lesions resulting from the activation of the oncogene. The LacZ541 rat enables evaluation of the performance of Cre‐expressing systems which are based upon transgenic rats or somatic gene transfer vectors and provides efficient and simple lineage marking. genesis 51:268–274. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
20.
In this study, we demonstrated that human type-5 adenovirus infected the brain of the teleost fish, medaka (Oryzias latipes), in vivo. Injection of adenoviral vector into the mesencephalic ventricle of medaka larvae induced the expression of reporter genes in some parts of the telencephalon, the periventricular area of the mesencephalon and diencephalon, and the cerebellum. Additionally, the Cre-loxP system works in medaka brains using transgenic medaka carrying a vector containing DsRed2, flanked by loxP sites under control of the β-actin promoter and downstream promoterless enhanced green fluorescent protein (EGFP). We demonstrated that the presence of green fluorescence depended on injection of adenoviral vector expressing the Cre gene and confirmed that EGFP mRNA was transcribed in the virus-injected larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号