首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY 1. Each individual planktonic plant or animal is exposed to the hazards of starvation and risk of predation, and each planktonic population is under the control of resource limitation from the bottom up (growth and reproduction) and by predation from the top down (mortality). While the bottom-up and top-down impacts are traditionally conceived as compatible with each other, field population-density data on two coexisting Daphnia species suggest that the nature of the two impacts is different. Rates of change, such as the rate of individual body growth, rate of reproduction, and each species' population growth rate, are controlled from the bottom up. State variables, such as biomass, individual body size and population density, are controlled from the top down and are fixed at a specific level regardless of the rate at which they are produced.
2. According to the theory of functional responses, carnivorous and herbivorous predators react to prey density rather than to the rate at which prey are produced or reproduced. The predator's feeding rate (and thus the magnitude of its effect on prey density) should hence be regarded as a functional response to increasing resource concentration.
3. The disparity between the bottom-up and top-down effects is also apparent in individual decision making, where a choice must be made between accepting the hazards of hunger and the risks of predation (lost calories versus loss of life).
4. As long as top-down forces are effective, the disparity with bottom-up effects seems evident. In the absence of predation, however, all efforts of an individual become subordinate to the competition for resources. Biomass becomes limited from the bottom up as soon as the density of a superior competitor has increased to the carrying capacity of a given habitat. Such a shift in the importance of bottom-up control can be seen in zooplankton in habitats from which fish have been excluded.  相似文献   

2.
Minimal models of top-down control of phytoplankton   总被引:5,自引:0,他引:5  
1. A set of models describing the dynamics of top-down control of phytoplankton by Daphnia in lakes is reviewed. The basis of these models is a simple and well-known model that has been used, among other things, to demonstrate the paradox of enrichment.
2. We discuss minimal extensions that allow this model to mimic the effects of spatial heterogeneity, planktivory, seasonality and inedible algae.
3. These models generate hypotheses about mechanisms that may cause patterns observed in the field such as:

    4. We discuss the way in which such very simple models may contribute to the building of theories about plankton dynamics in the field, and the caveats of interpreting wrongly the message from models.  相似文献   

3.
Significance of predation by protists in aquatic microbial food webs   总被引:31,自引:0,他引:31  
Predation in aquatic microbial food webs is dominated by phagotrophic protists, yet these microorganisms are still understudied compared to bacteria and phytoplankton. In pelagic ecosystems, predaceous protists are ubiquitous, range in size from 2 μm flagellates to >100 μm ciliates and dinoflagellates, and exhibit a wide array of feeding strategies. Their trophic states run the gamut from strictly phagotrophic, to mixotrophic: partly autotrophic and partly phagotrophic, to primarily autotrophic but capable of phagotrophy. Protists are a major source of mortality for both heterotrophic and autotrophic bacteria. They compete with herbivorous meso- and macro-zooplankton for all size classes of phytoplankton. Protist grazing may affect the rate of organic sinking flux from the euphotic zone. Protist excretions are an important source of remineralized nutrients, and of colloidal and dissolved trace metals such as iron, in aquatic systems. Work on predation by protists is being facilitated by methodological advances, e.g., molecular genetic analysis of protistan diversity and application of flow cytometry to study population growth and feeding rates. Examples of new research areas are studies of impact of protistan predation on the community structure of prey assemblages and of chemical communication between predator and prey in microbial food webs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Prey-dependent models, with the predation rate (per predator) a function of prey numbers alone, predict the existence of a trophic cascade. In a trophic cascade, the addition of a top predator to a two-level food chain to make a three-level food chain will lead to increases in the population size of the primary producers, and the addition of nutrients to three-level chains will lead to increases in the population numbers at only the first and third trophic levels. In contrast, ratio-dependent models, with the predation rate (per predator) dependent on the ratio of predator numbers to prey, predict that additions of top predators will not increase the population sizes of the primary producers, and that the addition of nutrients to a three-level food chain will lead to increases in population numbers at all trophic levels. Surprisingly, recent meta-analyses show that freshwater pelagic food web patterns match neither prey-dependent models (in pelagic webs, ''prey'' are phytoplankton, and ''predators'' are zooplankton), nor ratio-dependent models. In this paper we use a modification of the prey-dependent model, incorporating strong interference within the zooplankton trophic level, that does yield patterns matching those found in nature. This zooplankton interference model corresponds to a more reticulate food web than in the linear, prey-dependent model, which lacks zooplankton interference. We thus reconcile data with a new model, and make the testable prediction that the strength of trophic cascades will depend on the degree of heterogeneity in the zooplankton level of the food chain.  相似文献   

5.
1. Invasion of tropical zooplankton into temperate lakes provides an interesting opportunity to explore habitat segregation in a thermal gradient. 2. We explored differing vertical positioning of native and exotic Daphnia (Daphnia mendotae and Daphnia lumholtzi) in a large indoor mesocosm system (Plön plankton towers) during 2 month‐long experiments. The two towers were manipulated to provide gradients of both temperature (15–29 °C) and algal food (0.05–0.58 mg C L?1) and a day–night cycle. 3. Both juvenile and adult D. lumholtzi showed a ‘typical’ vertical migration pattern, with higher densities in the epilimnion at night than during the day. They avoided the food‐poor middle layer. In contrast, D. mendotae adults showed little tendency to migrate into the epilimnion at night, remaining in the cooler hypolimnion while juveniles migrated. The vertical distribution of D. mendotae appeared unaffected by the presence of D. lumholtzi. 4. The strong migration behaviour of D. lumholtzi in the absence of fish cues suggests that this behaviour may be a constitutive trait. Habitat partitioning of the two species is probably the result of different thermal tolerances, with D. mendotae constrained to remaining in deeper water by high temperatures in the epilimnion and the tropical D. lumholtzi able to use the warm epilimnion at night.  相似文献   

6.
7.
Omnivory does not prevent trophic cascades in pelagic food webs   总被引:2,自引:0,他引:2  
1. Strong trophic cascades have been well documented in pelagic food webs of temperate lakes. In contrast, the limited available evidence suggests that strong cascades are less typical in tropical lakes.
2. To measure the effects of omnivorous tilapia on planktonic communities and water transparency of a small man-made tropical lake, we performed a 5-week in situ enclosure experiment with five densities of fish randomly allocated to 20 enclosures. Zooplankton and Phytoplankton biomasses as well as water transparency were measured weekly.
3. Results show that omnivorous tilapia significantly decreased the abundance of large Cladocerans, increased the abundance of small algae (greatest axial linear dimension <50  μ m) and decreased water transparency as predicted by trophic cascade theory.
4. Therefore, omnivory was not a sufficient factor to prevent a trophic cascade in this pelagic community, although the cascade effect was weaker than reported from many north temperate, nutrient-rich lakes.  相似文献   

8.
Experiments were conducted to study the distribution of three selectedpolychlorinated biphenyl (PCB) congeners within the microbial food web attwo different nutrient levels; control and nutrient enriched. The objectivewas to quantify the uptake of PCBs through grazing by protozoa. The14C-PCBs tested were 4-chlorobiphenyl (IUPAC # 3),2,2,5,5-tetrachlorobiphenyl (IUPAC # 52), and2,2,4,4,5,5-hexachlorobiphenyl (IUPAC # 153). EachPCB was incubated in triplicate seawater samples at 20 idref;Cover one week. Daily, samples were separated into four fractions; <0.2µm (dissolved), 0.2-2 µm (bacteria), 2-10 µm(flagellate), and > 10 µm (microplankton; phytoplankton andprotozoa) by selective filtration. Of the PCB fraction that initiallyadsorbed to particles, 60–100% was associated to the bacterialfraction and 0–5% to the microplankton fraction. The totaluptake was highest in the nutrient enriched samples, but when normalized tothe carbon biomass the concentration was lower or equal to the control inall particle fractions. The recovery of the PCBs in the particulatefractions depended on the degree of chlorination, as the highest values wereobserved for the 2,2,4,4,5,5-hexachlorobiphenyl and thelowest for the 4-chlorobiphenyl. The concentrations in the bacterial andflagellate fractions decreased over the first 48–96 hours whilst theconcentration increased in the highest trophic level (>10 µmfraction). Approximately 75% of the increase in concentration of the2,2,4,4,5,5-hexachlorobiphenyl in the > 10 µmfraction was estimated to be the result of bacterivory. Our results indicatethe microbial food web can contribute to a rapid uptake of higherchlorinated PCBs, particularly in oligotrophic ecosystems where thebacterial biomass dominates.  相似文献   

9.
Kiørboe  Thomas 《Hydrobiologia》1997,363(1-3):13-27
Copepods constitute the majority of the mesozooplankton in the oceans.By eating and being eaten copepods have implications for the flow of matterand energy in the pelagic environment. I first consider populationregulation mechanisms in copepods by briefly reviewing estimates of growthand mortality rates and evidence of predation and resource limitation. Theeffects of variations in fecundity and mortality rates for the demography ofcopepod populations are then examined by a simple model, which demonstratesthat population growth rates are much more sensitive to variations inmortality than to variations in fecundity. This is consistent with theobserved tremendous variation in copepod fecundity rates, relatively low andconstant mortality rates and with morphological and behavioralcharacteristics of pelagic copepods (e.g., predator perception and escapecapability, vertical migration), which can all be considered adaptations topredator avoidance. The prey populations of copepods, mainly protozoa(ciliates) and phytoplankton, may be influenced by copepod predation tovarying degrees. The highly variable morphology and the population dynamics(e.g., bloom formation) of the most important phytoplankton prey populations(diatoms, dinoflagellates) suggest that predation plays a secondary role incontrolling their dynamics; availability of light and nutrients as well ascoagulation and sedimentation appear generally to be more important. Thelimited morphological variation of planktonic ciliates, the well developedpredator perception and escape capability of some species, and the oftenresource-unlimited in situ growth rates of ciliates, on the other hand,suggest that copepod predation is important for the dynamics of theirpopulations. I finally examine the implications of mesozooplankton activityfor plankton food webs, particularly their role in retarding vertical fluxesand, thus, the loss of material from the euphotic zone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The importance of top-down effects of piscivorous fish on phytoplankton in natural oligotrophic lakes is still debated. In this study, we analyzed patterns in phytoplankton and zooplankton abundance in 37 oligotrophic Canadian Shield lakes in relation to variations in both piscivorous fish predation and resources (total phosphorus; TP). Zooplankton community structure (but not total biomass) was partially affected by the variation in fish predation while the phytoplankton community structure and total biomass showed no response. Carbon isotope analyses revealed that the lack of top-down effects is due to the uncoupling of the littoral and the pelagic food webs. We found that the fish community depends mostly on benthic resources, suggesting that only low planktivory occurred in our study lakes. Due to the absence of specialized zooplanktivorous fish, zooplankton is poorly exploited in these lakes and thus able to control phytoplankton by grazing. A comparison of our data with published studies on the TP–chlorophyll a relationships in both natural and manipulated systems shows that the phytoplankton biomass per unit of TP is relatively low in Canadian Shield lakes.  相似文献   

11.
Research on microbial loop organisms, heterotrophic bacteria and phagotrophic protists, has been stimulated in large measure by Pomeroy's seminal paper published in BioScience in 1974. We now know that a significant fate of bacterioplankton production is grazing by < 20-µm-sized flagellates. By selectively grazing larger, more rapidly growing and dividing cells in the bacterioplankton assemblage, bacterivores may be directly cropping bacterial production rather than simply the standing stock of bacterial cells. Protistan herbivory, however, is likely to be a more significant pathway of carbon flow in pelagic food webs than is bacterivory. Herbivores include both < 20-µm flagellates as well as > 20-µm ciliates and heterotrophic dinoflagellates in the microzooplankton. Protists can grow as fast as, or faster than their phytoplankton prey. Phototrophic cells grazed by protists range from bacterial-sized prochlorophytes to large diatom chains (which are preyed upon by extracellularly-feeding dinoflagellates). Recent estimates of microzooplankton herbivory in various parts of the sea suggest that protists routinely consume from 25 to 100% of daily phytoplankton production, even in diatom-dominated upwelling blooms. Phagotrophic protists should be viewed as a dominant biotic control of both bacteria and of phytoplankton in the sea.  相似文献   

12.
Ecological communities are often characterised by many species occupying the same trophic level and competing over a small number of vital resources. The mechanisms maintaining high biodiversity in such systems are still poorly understood. Here, we revisit the role of prey selectivity by generalist predators in promoting biodiversity. We consider a generic tri‐trophic food web, consisting of a single limiting resource, a large number of primary producers and a generalist predator. We suggest a framework to describe the predator functional response, combining food selectivity for distinctly different functional prey groups with proportion‐based consumption of similar prey species. Our simulations reveal that intermediate levels of prey selectivity can explain a high species richness, functional biodiversity, and variability among prey species. In contrast, perfect food selectivity or purely proportion‐based food consumption leads to a collapse of prey functional biodiversity. Our results are in agreement with empirical phytoplankton rank‐abundance curves in lakes.  相似文献   

13.
Many phytoplankton taxa function on multiple trophic levels by combining photosynthesis and ingestion of bacteria, termed mixotrophy. Despite the recognition of mixotrophy as a universal functional trait, we have yet to fully resolve how environmental conditions influence community grazing rates in situ. A microcosm study was used to assess bacterivory by mixotrophic nanoflagellates following nutrient enrichment and light attenuation in a temperate lake. We found contrasting results based on assessment of mixotroph abundance or bacterivory. Despite an interactive effect of nutrient enrichment and light attenuation on mixotroph abundance, significant differences within light treatments were observed only after enrichment with P or N + P. The greatest abundance of mixotrophs across treatments occurred under co-nutrient enrichment with full exposure to irradiance. However, bacterivory by mixotrophic nanoflagellates was greatest under shaded conditions after either N or P enrichment. We suggest that PAR availability dampened the stimulatory effect of nutrient limitation, and bacterivory supplemented a suboptimal photosynthetic environment. In a saturating light regime, the mixotrophic community was less driven to ingest bacteria because photosynthesis was able to satisfy energetic demands. These findings quantify community bacterivory in response to environmental drivers that may characterize future ecosystem conditions and highlight the importance of considering grazing rates in conjunction with abundance of mixotrophic protists.  相似文献   

14.
1. Parasites are ubiquitous in ecosystems, but their roles in material transfer are poorly understood. Fungal parasites in freshwater ecosystems are of major importance to small heterotrophic eukaryotes and consume large phytoplankton that are resistant to zooplankton grazing. 2. To evaluate their ecosystem‐level effects, we developed a simple food web model that incorporates competition between small and large phytoplankton for nutrients, zooplankton grazing on small phytoplankton, fungal parasitism on large phytoplankton and includes a newly discovered trophic link from fungal zoospores to zooplankton (F‐Z link). 3. Our model demonstrates the likely occurrence of an indirect mutualism between fungi and zooplankton, in which fungal parasitism increases zooplankton production by reducing the biomass of inedible large phytoplankton. Contradicting the expectation from a previous short‐term experiment that the F‐Z link may benefit zooplankton, the presence of the F‐Z link can reduce material transfer from phytoplankton to zooplankton because of the negative effect of the indirect mutualism. The model indicates that high growth efficiency of fungi on host tissue and their high nutrient status for zooplankton are crucial for the F‐Z link to increase zooplankton production. 4. The model also indicates that the contribution of material transfer via F‐Z link to zooplankton increases with nutrient availability. Our results suggest that parasitic fungi may be a key player in material transfer, especially in eutrophic ecosystems.  相似文献   

15.
In recent decades, the frequency and intensity of harmful algal blooms (HABs), as well as a profusion of toxic phytoplankton species, have significantly increased in coastal regions of China. Researchers attribute this to environmental changes such as rising atmospheric CO2 levels. Such addition of carbon into the ocean ecosystem can lead to increased growth, enhanced metabolism, and altered toxicity of toxic phytoplankton communities resulting in serious human health concerns. In this study, the effects of elevated partial pressure of CO2 (pCO2) on the growth and toxicity of a strain of Alexandrium tamarense (ATDH) widespread in the East and South China Seas were investigated. Results of these studies showed a higher specific growth rate (0.31 ± 0.05 day−1) when exposed to 1000 μatm CO2, (experimental), with a corresponding density of (2.02 ± 0.19) × 107 cells L−1, that was significantly larger than cells under 395 μatm CO2(control). These data also revealed that elevated pCO2 primarily affected the photosynthetic properties of cells in the exponential growth phase. Interestingly, measurement of the total toxin content per cell was reduced by half under elevated CO2 conditions. The following individual toxins were measured in this study: C1, C2, GTX1, GTX2, GTX3, GTX4, GTX5, STX, dcGTX2, dcGTX3, and dcSTX. Cells grown in 1000 μatm CO2 showed an overall decrease in the cellular concentrations of C1, C2, GTX2, GTX3, GTX5, STX, dcGTX2, dcGTX3, and dcSTX, but an increase in GTX1 and GTX4. Total cellular toxicity per cell was measured revealing an increase of nearly 60% toxicity in the presence of elevated CO2 compared to controls. This unusual result was attributed to a significant increase in the cellular concentrations of the more toxic derivatives, GTX1 and GTX4.Taken together; these findings indicate that the A. tamarense strain ATDH isolated from the East China Sea significantly increased in growth and cellular toxicity under elevated pCO2 levels. These data may provide vital information regarding future HABs and the corresponding harmful effects as a result of increasing atmospheric CO2.  相似文献   

16.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

17.
18.
19.
A recent meta‐analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton ( Shurin et al. 2002 , Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia‐dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems.  相似文献   

20.
The commonness of omnivory in natural communities is puzzling, because simple dynamic models of tri-trophic systems with omnivory are prone to species extinction. In particular, the intermediate consumer is frequently excluded by the omnivore at high levels of enrichment. It has been suggested that adaptive foraging by the omnivore may facilitate coexistence, because the intermediate consumer should persist more easily if it is occasionally dropped from the omnivore's diet. We explore theoretically how species permanence in tri-trophic systems is affected if the omnivore forages adaptively according to the "diet rule", i.e., feeds on the less profitable of its two prey species only if the more profitable one is sufficiently rare. We show that, compared to systems where omnivory is fixed, adaptive omnivory may indeed facilitate 3-species persistence. Counter to intuition, however, facilitation of 3-species coexistence requires that the intermediate consumer is a more profitable prey than the basal resource. Consequently, adaptive omnivory does not facilitate persistence of the intermediate consumer but enlarges the persistence region of the omnivore towards parameter space where a fixed omnivore would be excluded by the intermediate consumer. Overall, the positive effect of adaptive omnivory on 3-species persistence is, however, small. Generally, whether omnivory is fixed or adaptive, 3-species permanence is most likely when profitability (=conversion efficiency into omnivores) is low for basal resources and high for intermediate consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号