首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The honeybee Apis mellifera has ecological and economic importance; however, it experiences a population decline, perhaps due to exposure to toxic compounds, which are excreted by Malpighian tubules. During metamorphosis of A. mellifera, the Malpighian tubules degenerate and are formed de novo. The objective of this work was to verify the cellular events of the Malpighian tubule renewal in the metamorphosis, which are the gradual steps of cell remodeling, determining different cell types and their roles in the excretory activity in A. mellifera. Immunofluorescence and ultrastructural analyses showed that the cells of the larval Malpighian tubules degenerate by apoptosis and autophagy, and the new Malpighian tubules are formed by cell proliferation. The ultrastructure of the cells in the Malpighian tubules suggest that cellular remodeling only occurs from dark-brown-eyed pupae, indicating the onset of excretion activity in pupal Malpighian tubules. In adult forager workers, two cell types occur in the Malpighian tubules, one with ultrastructural features (abundance of mitochondria, vacuoles, microvilli, and narrow basal labyrinth) for primary urine production and another cell type with dilated basal labyrinth, long microvilli, and absence of spherocrystals, which suggest a role in primary urine re-absorpotion. This study suggests that during the metamorphosis, Malpighian tubules are non-functional until the light-brown-eyed pupae, indicating that A. mellifera may be more vulnerable to toxic compounds at early pupal stages. In addition, cell ultrastructure suggests that the Malpighian tubules may be functional from dark-brown-eyed pupae and acquire greater complexity in the forager worker bee.  相似文献   

2.
3.
Dissected Malpighian tubules from wild type and the eye color mutant white of Drosophila were compared with respect to their abilities to transport tryptophan and kynurenine into tubule cells. It was determined that mutation at white greatly impairs the ability of Malpighian tubule cells to take up tryptophan. Functional studies on the extracellular spaces and ultrastructural observations indicated no differences in these respects between wild type and white tubules. It is consistent with several observations that much of the tryptophan associated with white exists in the intercellular spaces. Furthermore, the uptake of tryptophan by the w + system of wild type tubules is inhibited by the analogue 5-methyl-tryptophan. However, the incorporation of radioactive tryptophan into protein in tubule cells from wild type and white occurs at the same rates and is not affected by 5-methyl-tryptophan. Therefore, it is apparent that Malpighian tubules have a transport system that enables entry of tryptophan into a cellular pool and that this cellular pool is initially independent of the tryptophan pool used for protein synthesis. The mutant white lacks this transport system. From these studies and others it appears that compartmentalization of cellular pools may be brought about via the utilization of specific membrane transport systems.  相似文献   

4.
5.
The control of developmental changes in Malpighian tubule cell structure and fluid secretion by 20-hydroxyecdysone and juvenile hormone in the skipper butterfly Calpodes ethlius were studied using (1) in vitro tissue culture, (2) in vivo injection and topical application and (3) tubule transplantation experiments. At pupation, 20-hydroxyecdysone initiates cell remodelling and switches off fluid secretion in the Malpighian tubules. Juvenile hormone inhibits these alterations provided that treatment is begun on the first day of the last larval stage. In the pupal stage, 20-hydroxyecdysone triggers the differentiation of adult cell structure which culminates in the renewal of fluid secretion. The results show that 20-hydroxyecdysone and juvenile hormone regulate Malpighian tubule function by altering cell structure and are discussed with respect to the hormonal reprogramming of the Malpighian tubule cells during development.  相似文献   

6.
7.
The Malpighian tubules play a major role in haemolymph calcium homeostasis in insects by sequestering excess Ca2+ within the biomineralized granules that often accumulate in the tubule cells and/or lumen. Using the scanning ion‐selective microelectrode technique, measurements of basolateral Ca2+ transport are determined at several sites along the length of the Malpighian tubules isolated from the eight insects representing seven orders: Drosophila melanogaster (Diptera), Aedes aegypti (Diptera), Tenebrio molitor (Coleoptera), Acheta domesticus (Orthoptera), Trichoplusia ni (Lepidoptera), Periplaneta americana (Blattodea), Halyomorpha halys (Hemiptera) and Pogonomyrmex occidentalis (Hymenoptera). Ca2+ transport is specific to tubule segments containing Ca‐rich granules in D. melanogaster and A. aegypti, whereas Ca2+ transport is relatively uniform along the length of whole tubules in the remaining species. Generally, manipulation of second messenger pathways using cAMP and thapsigargin has little effect on rates of basolateral Ca2+ transport, suggesting that previous effects observed across midtubules of A. domesticus are unique to this species. In addition, the present study is the first to provide measurements of basolateral Ca2+ across single principal and secondary tubule cells, where Ca2+ uptake occurs only across principal cells. Estimated times for all tubules to eliminate the entire haemolymph Ca2+ content in each insect range from 6 min (D. melanogaster) to 19 h (H. halys) or more, indicating that rates of Ca2+ uptake by the Malpighian tubules are not always rapid. The results of the present study suggest that the principal cells of the Malpighian tubules contribute to haemolymph calcium homeostasis by sequestering excess Ca2+, often within specific tubule segments.  相似文献   

8.
The larvae of Bittacidae, a cosmopolitan family in Mecoptera, have an interesting habit of spraying the body surface with soil through the anus after hatching, and each molts. The fine structure of Malpighian tubules, however, remains largely unknown in the larvae of Bittacidae to date. Here, we studied the ultrastructure of the larval Malpighian tubules in the hangingfly Terrobittacus implicatus (Huang & Hua) using scanning and transmission electron microscopy. The larvae of T. implicatus have six elongate Malpighian tubules at the junction of the midgut and hindgut. The tubule comprises a basal lamina, a single-layered epithelium, and a central lumen. The basal plasma membranes of the epithelial cells are conspicuously infolded and generate a labyrinth. The epithelium consists of two types of cells: large principal cells and scattered stellate cells. Mitochondria and cisterns of rough endoplasmic reticulum are numerous in the principal cells but are sparsely distributed in the stellate cells, indicating that the principal cells are active in transport. On the other hand, spherites are only abundant in the principal cells and are likely associated with the soil-spraying habit of the larvae.  相似文献   

9.
10.
Modulation of renal epithelial ion transport allows organisms to maintain ionic and osmotic homeostasis in the face of varying external conditions. The Drosophila melanogaster Malpighian (renal) tubule offers an unparalleled opportunity to study the molecular mechanisms of epithelial ion transport, due to the powerful genetics of this organism and the accessibility of its renal tubules to physiological study. Here, we describe the use of the Ramsay assay to measure fluid secretion rates from isolated fly renal tubules, with the use of ion-specific electrodes to measure sodium and potassium concentrations in the secreted fluid. This assay allows study of transepithelial fluid and ion fluxes of ~20 tubules at a time, without the need to transfer the secreted fluid to a separate apparatus to measure ion concentrations. Genetically distinct tubules can be analyzed to assess the role of specific genes in transport processes. Additionally, the bathing saline can be modified to examine the effects of its chemical characteristics, or drugs or hormones added. In summary, this technique allows the molecular characterization of basic mechanisms of epithelial ion transport in the Drosophila tubule, as well as regulation of these transport mechanisms.  相似文献   

11.
The presence of a Na+K+-activated, Mg2+-dependent ATPase (E.C. 3.6.1.3) has been demonstrated in microsomal preparations from the Malpighian tubules of Locusta. The effects of sodium and potassium ions, and different concentrations of ouabain, have been studied in relation to the activity of this enzyme and the ability of in vitro Malpighian tubule preparations to secrete fluid. From these studies it seems highly likely that a Na+K+ activated ATPase ‘pump’ is involved in fluid transport across the walls of the tubules.  相似文献   

12.
The vast majority of Dermaptera are free-living and oviparous, i.e., females lay eggs within which embryonic development occurs until the larva hatches. In contrast, in the epizoic dermapteran Arixenia esau, eggs are retained within mother’s body and the embryos and first instar larvae develop inside her reproductive system. Such a reproductive strategy poses many physiological challenges for a mother, one of which is the removal of metabolic waste generated by the developing offspring. Here, we examine how the Arixenia females cope with this challenge by analyzing features of the developing larval excretory system. Our comparative analyses of the early and late first instar larvae revealed characteristic modifications in the cellular architecture of the Malpighian tubules, indicating that these organs are functional. The results of the electron probe microanalyses suggest additionally that the larval Malpighian tubules are mainly involved in maintaining ion homeostasis. We also found that the lumen of the larval alimentary track is occluded by a cellular diaphragm at the midgut-hindgut junction and that cells of the diaphragm accumulate metabolic compounds. Such an organization of the larval gut apparently prevents fouling of the mother’s organism with the offspring metabolic waste and therefore can be regarded as an adaptation for viviparity.  相似文献   

13.
Haemolymph calcium homeostasis in insects is achieved through the regulation of calcium excretion by Malpighian tubules in two ways: (1) sequestration of calcium within biomineralized granules and (2) secretion of calcium in soluble form within the primary urine. Using the scanning ion-selective electrode technique (SIET), basolateral Ca2+ transport was measured at the distal, transitional, main and proximal tubular segments of anterior tubules isolated from both 3rd instar larvae and adults of the fruit fly Drosophila melanogaster. Basolateral Ca2+ transport exceeded transepithelial secretion by 800-fold and 11-fold in anterior tubules of larvae and adults, respectively. The magnitude of Ca2+ fluxes across the distal tubule of larvae and adults were larger than fluxes across the downstream segments by 10 and 40 times, respectively, indicating a dominant role for the distal segment in whole animal Ca2+ regulation. Basolateral Ca2+ transport across distal tubules of Drosophila varied throughout the life cycle; Ca2+ was released by distal tubules of larvae, taken up by distal tubules of young adults and was released once again by tubules of adults ⩾168 h post-eclosion. In adults and larvae, SIET measurements revealed sites of both Ca2+ uptake and Ca2+ release across the basolateral surface of the distal segment of the same tubule, indicating that Ca2+ transport is bidirectional. Ca2+ uptake across the distal segment of tubules of young adults and Ca2+ release across the distal segment of tubules of older adults was also suggestive of reversible Ca2+ storage. Our results suggest that the distal tubules of D. melanogaster are dynamic calcium stores which allow efficient haemolymph calcium regulation through active Ca2+ sequestration during periods of high dietary calcium intake and passive Ca2+ release during periods of calcium deficiency.  相似文献   

14.
小地老虎变态期间马氏管超微结构与酯酶活性的变化   总被引:2,自引:0,他引:2  
本实验用光镜和电镜观察了小地老虎Agrotis ypsilon Rottemberg幼虫在变态期间马氏管超微结构的变化及成虫马氏管的重组过程,同时还研究了变态期马氏管酯酶的活性.结果表明:(1)变态期间马氏管外形完整,除至预蛹期隐肾复合体解体外,其余无明显变化.(2)变态期间管壁细胞变化显著.幼虫6龄末期马氏管细胞结构开始变化,主要特点为:细胞质电子密度高,充满了核糖体颗粒,微绒毛萎缩,线粒体从萎缩的微绒毛中退出进入细胞质,基膜内褶破坏.进入预蛹期幼虫马氏管细胞解体:基膜内褶、顶端微绒毛、线粒体及细胞质内的其它细胞器消失,并形成自体吞噬泡,细胞质内仅存细胞核及各种类型的液泡.但是在变态期间因底膜始终存在,故马氏管外形不变;至蛹后期,成虫马氏管细胞在原位重组,基膜内褶由浅变深,微绒毛由短变长,线粒体内嵴从无到有.(3)变态过程中羧酸酯酶和酸性磷酸酯酶的活性变化趋势基本相同,以六龄幼虫最强,预蛹期次之,蛹期最低.  相似文献   

15.
16.
The effect of the antibiotic Nikkomycin was investigated on the Malpighian tubules and the gut of fourth-instar larvae of the Mexican bean beetle, Epilachna varivestis. Within the Malpighian tubules, three different stages in cell alterations can be recognized. A stage of increased activity (Stage A), and two stages of dedifferentiation (Stages B and C) which are distinguishible by characteristic mitochondrial morphology. In Stage C individuals, when Malpighian tubule function stops entirely, alterations in the midgut take place, that are signs of increased activity. Measurements of hemolymph osmotic pressure showed that there is a considerable increase to a higher level which is maintained. Compared with the ultrastructural data, the regulation of osmotic pressure on a higher level may, in part, be the result of compensation for the failure of Malpighian tubule function by the midgut.  相似文献   

17.
Developmental changes in Malpighian tubule fluid transport were studied using in vitro and in situ preparations from timed larval, pupal and adult skipper butterflies (Calpodes ethlius). The ability to transport fluid and the rate of fluid secretion depend on the developmental stage and the physiological state. Larval tubules are permanently switched on, do not require a diuretic hormone and transport fluid at an increasing rate as the larvae feed and grow. Fluid transport continues at larval-larval moults but is switched off 24 hr before pupal ecdysis. No secretory activity occurs during the first half of the pupal stage when the tubules are remodelled for adult function. The resumption of fluid transport midway through the pupal stage is in preparation for a rapid diuresis at adult emergence. High rates of fluid secretion are associated with feeding or drinking in adults.  相似文献   

18.
19.
Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance.Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly.Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways.Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress.  相似文献   

20.
The development of the Malpighian tubules is studied in Cloeon dipterum through all stages from the youngest larva to the adult. The Malpighian tubules are found to be outgrowths of the posterior part of the endodermal midgut and not of the ectodermal hindgut. In the adult the part of the intestine with the tubule openings becomes separated by an ingrowing fold of the epithelium from the anterior main part of the midgut that forms a large thin-walled and air-filled bladder. The characteristics of the developmental stages, which served to determine the age of the animals, are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号