首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The study of hemolymph melanization in Lepidoptera has contributed greatly to our understanding of its role in insect immunity. Manduca sexta in particular has been an excellent model for identifying the myriad components of the phenoloxidase (PO) cascade and their activation through exposure to pathogen-associated molecular patterns (PAMPs). However, in a process that is not well characterized or understood, some insect species rapidly melanize upon wounding in the absence of added PAMPs. We sought to better understand this process by measuring wound-induced melanization in four insect species. Of these, only plasma from late 5th instar M. sexta was unable to melanize, even though each contained millimolar levels of the putative melanization substrate tyrosine (Tyr). Analysis of Tyr metabolism using substrate-free plasmas (SFPs) from late 5th instar larvae of each species showed that only M. sexta SFP failed to melanize with added Tyr. In contrast, early instar M. sexta larvae exhibited wound-induced melanization and Tyr metabolism, and SFPs prepared from these larvae melanized in the presence of Tyr. Early instar melanization in M. sexta was associated with the formation of a high mass protein complex that could be observed enzymatically in native gels or by PO-specific immunoblotting. Topical treatment of M. sexta larvae with the juvenile hormone (JH) analog methoprene delayed pupation and increased melanizing ability late in the instar, thus linking development with immunity. Our results demonstrate that melanization rates are highly variable in Lepidoptera, and that developmental stage can be an important factor for melanization within a species. More specifically, we show that the physiological substrate for melanization in M. sexta is Tyr, and that melanization is associated with the formation of a PO-containing protein complex.  相似文献   

3.
In the insect immune system, nodules are known to be a product of the cellular response against microorganisms and may be a preferential target for melanization. However, the mechanism of nodule-preferential melanization remains to be explored. In this study, we identified several mechanisms of nodule-preferential melanization by analyzing congregation and the activation of several factors involved in the prophenoloxidase (proPO)-activating system in the silkworm, Bombyx mori. Microorganism-binding assays revealed that B. mori larval plasma have an effective invading microorganism-surveillance network consisting of at least six pattern-recognition receptors (PRRs). We also found that a hemolymph serine proteinase, BmHP14, can bind to Saccharomyces cerevisiae. Pull-down assays showed that PRR C-type lectins form protein complexes with serine proteinase homologs, BmSPH1 and BmSPH2, which leads to the activated forms of BmSPH1 and BmSPH2 being gathered on microorganisms and trapped in nodules. Immunostaining analysis revealed that most factors in the proPO-activating system and some factors in the triggering system for antimicrobial peptide production exist in the granules of hemocytes which can gather in nodules. Western blot analysis showed that factors in the proPO-activating system are congregated in formed nodules by their concentration in plasma and aggregating hemocytes.  相似文献   

4.
5.
Previously, we proposed the following mechanism for konjac ceramide (kCer)-mediated neurite outgrowth inhibition: kCer binds to Nrp as a Sema3A agonist, resulting in Nrp1/PlexA complex formation and activation of the Sema3A signaling pathway to induce phosphorylation of CRMP2 and microtubule depolymerization. The Sema3A/Nrp1 signaling pathway is known to be also expressed in normal human keratinocytes. To determine whether kCer can function in human keratinocytes as it does in neurites, that is, if it can bind to Nrp1 in place of Sema3A, we studied the effect of kCer on HaCaT cell migration activity. Using a trans-well chamber assay, we compared the effects of Sema3A and kCer on serum-derived cell migration activity. kCer showed Sema3A-like suppression of cell migration activity and induction of cellular Cofilin phosphorylation. In addition, kCer and Sema3A inhibited histamine (His)-enhanced migration of immature HaCaT cells. We have demonstrated that kCer does not interact with histaime receptors H1R or H4R directly, but we speculate that kCer may transduce a signal downstream of the His signaling pathway.  相似文献   

6.
7.
8.
Aminopeptidase N (APN) isoforms from Lepidoptera are known for their involvement in the mode of action of insecticidal Cry proteins from Bacillus thuringiensis. These enzymes belong to a protein family with at least eight different members that are expressed simultaneously in the midgut of lepidopteran larvae. Here, we focus on the characterization of the APNs from Ostrinia nubilalis (OnAPNs) to identify potential Cry receptors. We expressed OnAPNs in insect cells using a baculovirus system and analyzed their enzymatic activity by probing substrate specificity and inhibitor susceptibility. The interaction with Cry1Ab and Cry1Fa proteins (both found in transgenic insect-resistant maize) was evaluated by ligand blot assays and immunocytochemistry. Ligand blots of brush border membrane proteins showed that both Cry proteins bound mainly to a 150 kDa-band, in which OnAPNs were greatly represented. Binding analysis of Cry proteins to the cell-expressed OnAPNs showed that OnAPN1 interacted with both Cry1Ab and Cry1Fa, whereas OnAPN3a and OnAPN8 only bound to Cry1Fa. Two isoforms, OnAPN2 and OnAPN3b, did not interact with any of these two proteins. This work provides the first evidence of a differential role of OnAPN isoforms in the mode of action of Cry proteins in O. nubilalis.  相似文献   

9.
The aim of this study was to investigate the impact of prolonged storage at 4 °C on survival of cat preantral follicles (PAFs) pre- and post-vitrification. Ovaries were obtained from 12 queens and transported at 4 ºC within 2–6 h. Parts of the ovaries were stored for an additional 24 h or 72 h. The ovarian cortex was dissected, analyzed for viability (neutral red - NR) and morphology (histology - HE and ultrastructural analysis by TEM) and vitrified. We used 2 mm biopsy punches to obtain equal size pieces as the experimental units. After NR assessment, each sample was fixed and embedded in paraffin for HE staining to determine the number of morphologically intact follicles. Another 2 mm piece of ovary was subjected to TEM. NR viability assessment and HE results showed a similar tendency with PAF survival postvitrification even after prolonged cooling at 24 h and 72 h. With TEM, integrity of mitochondria, plasma and basal membranes as well as the presence of pre-granulose cells of PAFs were documented postvitrification for the control group and 24 h prolonged storage group, but not after 72 h storage. Our results showed that cat PAFs can survive prolonged storage followed by vitrification. The described set of techniques are applicable towards creating a gamete bank for endangered feline species.  相似文献   

10.
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3–phosphatidylethanolamine (LC3–II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.  相似文献   

11.
Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.  相似文献   

12.
13.
Entomopathogenic fungi penetrate the insect cuticle using their abundant hydrolases. These hydrolases, which include cuticle-degrading proteases and chitinases, are important virulence factors. Our recent findings suggest that many serine protease inhibitors, especially TIL-type protease inhibitors, are involved in insect resistance to pathogenic microorganisms. To clarify the molecular mechanism underlying this resistance to entomopathogenic fungi and identify novel genes to improve the silkworm antifungal capacity, we conducted an in-depth study of serine protease inhibitors. Here, we cloned and expressed a novel silkworm TIL-type protease inhibitor, BmSPI39. In activity assays, BmSPI39 potently inhibited the virulence protease CDEP-1 of Beauveria bassiana, suggesting that it might suppress the fungal penetration of the silkworm integument by inhibiting the cuticle-degrading proteases secreted by the fungus. Phenol oxidase activation studies showed that melanization is involved in the insect immune response to fungal invasion, and that fungus-induced excessive melanization is suppressed by BmSPI39 by inhibiting the fungal cuticle-degrading proteases. To better understand the mechanism involved in the inhibition of fungal virulence by protease inhibitors, their effects on the germination of B. bassiana conidia was examined. BmSPI38 and BmSPI39 significantly inhibited the germination of B. bassiana conidia. Survival assays showed that BmSPI38 and BmSPI39 markedly improved the survival rates of silkworms, and can therefore be used as targeted resistance proteins in the silkworm. These results provided new insight into the molecular mechanisms whereby insect protease inhibitors confer resistance against entomopathogenic fungi, suggesting their potential application in medicinal or agricultural fields.  相似文献   

14.
We analyzed cell viability, caspase activity, plasma membrane alterations and cell ultrastructure morphology to estimate the morphological and biochemical alterations that occur in bivalve molluscan cell cultures during cryopreservation. The use of 5% dymethyl sulfoxide as a cryoprotectant resulted in greater cell survival and a scarcity of destroyed cells lacking cytosol among dead cells. In this case, almost all cells died through necrosis or apoptosis, which appeared to increase in mussel cell cultures after a freeze-thaw cycle. Apoptosis was not a main death pathway in mussel cells, but it was induced in a significant part of these cells (up to 24%) immediately after thawing and depended mostly on the cryoprotectant used. Regardless of the type of the used cryoprotectant, we observed some nuclear aberrations in cells after freezing-thawing, such as few multipolar mitoses or the absence of a division spindle in mitotic cells. After analyzing different methods for assessing cell damage, the best results were obtained from optimal approaches that could provide information regarding the cell disruption level after freezing-thawing and could be considered for future studies.  相似文献   

15.
16.
Sternal pores are important features for identification of male thrips, especially within the subfamily Thripinae. They vary in shape, size and distribution even between species of one genus. Their functional role is speculated to be that of sex- and/or aggregation pheromone production. Yet, sexual aggregations are not reported in Echinothrips americanus, known to have sternal pores, while we observed aggregations in Megalurothrips sjostedti, previously reported to lack them.We examined the sternal glands and pores of the thripine species E. americanus and M. sjostedti males, in comparison with those of Frankliniella occidentalis using light microscopy, as well as scanning and transmission electron microscopy. Pore plates of F. occidentalis were ellipsoid and medial on sternites III–VII, while in E. americanus they were distributed as multiple micro pore plates on sternites III–VIII. In M. sjostedti they appeared as an extremely small pore in front of the posterior margin of each of sternites IV–VII. Pore plate and pore plate area were distributed similarly on sternites III–VII in F. occidentalis. However, in E. americanus the total pore plate area increased significantly from sternites III to VIII. Ultrastructure of cells associated with sternal glands showed typical characteristics of gland cells that differ in size, shape and number. The function of sternal glands is further discussed on the basis of morphological comparisons with other thrips species.  相似文献   

17.
Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown.In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient.B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk formation may lead to a more efficient production of artificial or regenerated silkworm silk fibers.  相似文献   

18.
19.
Resveratrol (RES) is a putative chemotherapeutic naturally found in grapes, peanuts, and Japanese knotweed. Previous studies demonstrate that RES modulates calcium signaling as part of its chemotherapeutic activity. In this study, we determined the chemotherapeutic activity of three RES esters that have been modified at the 4’ hydroxyl by the addition of pivalate, butyrate, and isobutyrate. All of the RES derivatives disrupted the calcium signaling in prostate cancer cells more than the parent compound, RES. Further, we demonstrate that the RES derivatives may disrupt the calcium homeostasis by activating calcium release from the endoplasmic reticulum and inhibiting plasma membrane Ca2+-ATPase. The pivalated and butyrated RES derivatives decreased cell viability significantly more than RES. Because pivalated and butyrated RES are more effective than RES at targeting calcium signaling pathways, pivalated and butyrated RES may serve as more effective chemotherapeutics.  相似文献   

20.
In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other fibroin genes using transgenic silkworms. The genes for Ldb and Lcaf were expressed ubiquitously in various tissues, while the gene for Awh was expressed strictly specific in PSG of the wild type silkworms. Misexpression of Awh in transgenic silkworms induced ectopic expression of fibL and fhx as well as fibH in MSG. Coincidently with the induction of fibL and fhx by Awh, binding of SGF-2 to the promoter of fibL and fhx was detected in vitro, and SGF-2 binds directly to the fhx core promoter. Ectopic expression of the fibroin genes was observed at high levels in the middle part of MSG. Moreover, fibL and fhx were induced in the anterior silk gland (ASG) of the transgenic silkworms, but fibH was not. These results indicate that Awh is a key activator of all three fibroin genes, and the activity is probably regulated in conjunction with additional factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号