共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The endosomal compartment is a major sorting station controlling the balance between endocytic recycling and lysosomal degradation, and its homeostasis is emerging as a central factor in various neurodegenerative diseases such as Alzheimer's and Parkinson's. Membrane trafficking is generally coordinated by the recognition of specific signals in transmembrane protein cargos by different transport machineries. A number of different protein trafficking complexes are essential for sequence-specific recognition and retrieval of endosomal cargos, recycling them to other compartments and acting to counter-balance the default endosomal sorting complex required for transport–mediated degradation pathway. In this review, we provide a summary of the key endosomal transport machineries, and the molecular mechanisms by which different cargo sequences are specifically recognised. 相似文献
3.
Sigrid B. Thoresen Nina Marie Pedersen Knut Liestøl 《Experimental cell research》2010,316(20):3368-3378
The mammalian class III phosphatidylinositol 3-kinase (PI3K-III) complex regulates fundamental cellular functions, including growth factor receptor degradation, cytokinesis and autophagy. Recent studies suggest the existence of distinct PI3K-III sub-complexes that can potentially confer functional specificity. While a substantial body of work has focused on the roles of individual PI3K-III subunits in autophagy, functional studies on their contribution to endocytic receptor downregulation and cytokinesis are limited. We therefore sought to elucidate the specific nature of the PI3K-III complexes involved in these two processes. High-content microscopy-based assays combined with siRNA-mediated depletion of individual subunits indicated that a specific sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates both receptor degradation and cytokinesis, whereas ATG14L, a PI3K-III subunit involved in autophagy, is not required. The unanticipated role of UVRAG and BIF-1 in cytokinesis was supported by a strong localisation of these proteins to the midbody. Importantly, while the tumour suppressive functions of Beclin 1, UVRAG and BIF-1 have previously been ascribed to their roles in autophagy, these results open the possibility that they may also contribute to tumour suppression via downregulation of mitogenic signalling by growth factor receptors or preclusion of aneuploidy by ensuring faithful completion of cell division. 相似文献
4.
内吞体分选转运复合体(Endosomal sorting complex required for transport,ESCRT)主要识别泛素化修饰的膜蛋白,介导内吞小泡出芽和多泡体(Multivesicular bodies,MVBs)的形成。此外,以类似的拓扑方式,ESCRT也参与胞质分裂、自体吞噬、以及包膜病毒的出芽等过程。已有的研究表明,大量的反转录病毒和RNA病毒含有晚期结构域(Late-domains),该结构域与ESCRT组分相互作用,将ESCRT-Ⅲ和VPS4等募集在病毒组装与出芽区域,并利用ESCRT-Ⅲ使病毒粒子得以释放。最近,有研究发现,一些DNA包膜病毒、如乙肝病毒、疱疹病毒和杆状病毒等的出芽释放也依赖于宿主细胞ESCRT系统,但其机理尚需深入研究。 相似文献
5.
Bowers K Lottridge J Helliwell SB Goldthwaite LM Luzio JP Stevens TH 《Traffic (Copenhagen, Denmark)》2004,5(3):194-210
Ten class E Vps proteins in yeast are known components of the ESCRT complexes I, II and III, which are required for the sorting of proteins to the lumenal membranes of multivesicular bodies. We used the yeast 2 hybrid system to analyze the protein–protein interactions of all 17 soluble class E Vps proteins, as well as proteins thought to be required for the ubiquitination and deubiquitination of cargo proteins at multivesicular bodies. We identified novel interactions between yeast ESCRT complex components suggesting that ESCRTI binds to both ESCRTII and ESCRTIII. These interactions were confirmed by GST pull-down experiments. Our data indicate that the link between ESCRTI and ESCRTIII is via Vps28p and Vps37p/Srn2p binding directly to Vps20p, as well as through indirect interactions via ESCRTII. This is in contrast to the situation in mammalian cells where ESCRTI and ESCRTIII interact indirectly via ALIX, the mammalian homologue of yeast proteins Vps31p/Bro1p and Rim20p. Our data also enable us to link all soluble class E Vps proteins to the ESCRT complexes. We propose the formation of a large multimeric complex on the endosome membrane consisting of ESCRTI, ESCRTII, ESCRTIII and other associated proteins. 相似文献
6.
Ximing Du Abdulla S. Kazim Ian W. Dawes Andrew J. Brown Hongyuan Yang 《Traffic (Copenhagen, Denmark)》2013,14(1):107-119
The exit of low‐density lipoprotein derived cholesterol (LDL‐C) from late endosomes (LE)/lysosomes (Ly) is mediated by Niemann–Pick C1 (NPC1), a multipass integral membrane protein on the limiting membranes of LE/Ly, and by NPC2, a cholesterol‐binding protein in the lumen of LE/Ly. NPC2 delivers cholesterol to the N‐terminal domain of NPC1, which is believed to insert cholesterol into the limiting membrane for subsequent transport to other subcellular organelles. Few cytoplasmic factors have been identified to govern cholesterol efflux from LE/Ly, and much less is known about the underlying molecular mechanisms. Here we establish VPS4, an AAA ATPase that has a well‐established role in disassembling the ESCRT (endosomal sorting complex required for transport)‐III polymer, as an important regulator of endosomal cholesterol transport. Knocking down VPS4 in HeLa cells resulted in prominent accumulation of LDL‐C in LE/Ly, and disrupted cholesterol homeostatic responses at the endoplasmic reticulum. The level and localization of NPC1 and NPC2 appeared to be normal in VPS4 knockdown cells. Importantly, depleting any of the ESCRT‐III components did not exert a significant effect on endosomal cholesterol transport. Our results thus identify an important cytoplasmic regulator of endosomal cholesterol trafficking and represent the first functional separation of VPS4 from ESCRT‐III. 相似文献
7.
Class E vacuolar protein-sorting (Vps) proteins were first described in yeast as being involved in receptor-mediated endocytosis and multivesicular body formation. Inactivation by RNA interference of the class E VPS genes of the nematode Caenorhabditis elegans revealed heterogeneous phenotypes. We have further characterized the role of the essential gene Cevps-27, ortholog of human hepatocyte growth factor-regulated tyrosine kinase substrate, during the development of C. elegans. Use of green fluorescent protein fusion constructs and antibody staining revealed that Cevps-27 localizes to endosomal membranes. It is widely expressed but enriched in epithelial cells. Cevps-27 mutants presented enlarged endosomal structures and an accumulation of autophagic vesicles as revealed by electron microscopy and the analysis of the autophagic marker LGG-1. Cevps-27 animals arrested at L2-L3 molt with an inability to degrade their old cuticle. This molting phenotype was more severe when Cevps-27 worms were grown on suboptimal concentrations of cholesterol. Furthermore, defective endocytic trafficking of the low-density lipoprotein receptor-related protein 1 (LRP-1) was also observed in Cevps-27 mutants. These results indicate that CeVPS-27 is required for endosomal and autophagic pathways in C. elegans and plays a crucial role in the control of molting through LRP-1 internalization and cholesterol traffic. 相似文献
8.
Jun Cheng Zhihao Xu Wei Tan Jinpeng He Boyu Pan Yan Zhang Youwen Deng 《Journal of cellular physiology》2024,239(3):e31068
9.
Xavier Michelet Adriana Alberti Laura Benkemoun Nathalie Roudier Christophe Lefebvre Renaud Legouis 《Biology of the cell / under the auspices of the European Cell Biology Organization》2009,101(10):599-615
Background information. Within the endocytic pathway, the ESCRT (endosomal sorting complex required for transport) machinery is essential for the biogenesis of MVBs (multivesicular bodies). In yeast, ESCRTs are recruited at the endosomal membrane and are involved in cargo sorting into intralumenal vesicles of the MVBs. Results. In the present study, we characterize the ESCRT‐III protein CeVPS‐32 (Caenorhabditis elegans vacuolar protein sorting 32) and its interactions with CeVPS‐27, CeVPS‐23 and CeVPS‐4. In contrast with other CevpsE (class E vps) genes, depletion of Cevps‐32 is embryonic lethal with severe defects in the remodelling of epithelial cell shape during organogenesis. Furthermore, Cevps‐32 animals display an accumulation of enlarged early endosomes in epithelial cells and an accumulation of autophagosomes. The CeVPS‐32 protein is enriched in epithelial tissues and in residual bodies during spermatid maturation. We show that CeVPS‐32 and CeVPS‐27/Hrs (hepatocyte‐growth‐factor‐regulated tyrosine kinase substrate) are enriched in distinct subdomains at the endosomal membrane. CeVPS‐27‐positive subdomains are also enriched for the ESCRT‐I protein CeVPS‐23/TSG101 (tumour susceptibility gene 101). The formation of CeVPS‐27 subdomains is not affected by the depletion of CeVPS‐23, CeVPS‐32 or the ATPase CeVPS‐4. Conclusion. Our results suggest that the formation of membrane subdomains is essential for the maturation of endosomes. 相似文献
10.
11.
细胞信号传导PI3K-Akt路径涉及细胞周期、再生、分化、衰老与凋亡的调控,采用高通量生物技术分析基因表达谱可用于抗肿瘤或抗衰老的基因与药物筛选.化学诱变剂甲磺酸乙酯(ethlmethane sulformate, EMS)处理CHO细胞,筛选到抗10 μM、20 μM浓度lovastatin的E10、E20突变细胞系,将E10细胞再经诱变剂EMS处理,筛选到抗70 μM浓度lovastatin的ZE70细胞系.Igf-2刺激基因突变的肌肉萎缩小鼠肌肉细胞系,Western免疫杂交试验结果显示,PI3K-Akt路径的Akt蛋白质磷酸化功能正常.生长因子Igf-2刺激肌肉细胞系C2C12的cDNA基因芯片实验表明,促细胞再生、分化相关的基因表达上调,细胞凋亡相关的基因表达下调.细胞的基因突变,激素、Igf-2等生长因子刺激,往往是肿瘤发生的病因;但是,Igf-2等可用于抗肌肉萎缩疾病,以及抗细胞凋亡与衰老的药物筛选. 相似文献
12.
位于细胞膜上的易化葡葡糖载体(facilitated glucose transPorter,GLUTs)促进体内葡葡糖的跨膜转运,它对稳定细胞能量和维持生命活动起到至关重要作用。到目前为止已相继发现并鉴定了12种GLUTs,它们由不同基因编码,具有相似的蛋白质结构和生物功能,在基因表达和细胞内分布受多种因素调控,其中最重要的是胰岛素。胰岛素通过P13K信息通路和Cbl激活蛋白(Cbl actiVating Protn,CAP)-Cbl信息通路实现对GLUT4等的快速周转,从而改变葡葡糖进入细胞的量。深入了解GLUTs的生物学特性和调控机制具有重要的临床意义。 相似文献
13.
Sarah Carpentier Francisca N'Kuli Giuseppina Grieco Patrick Van Der Smissen Virginie Janssens Hervé Emonard Benoît Bilanges Bart Vanhaesebroeck Héloïse P. Gaide Chevronnay Christophe E. Pierreux Donatienne Tyteca Pierre J. Courtoy 《Traffic (Copenhagen, Denmark)》2013,14(8):933-948
Recycling is a limiting step for receptor‐mediated endocytosis. We first report three in vitro or in vivo evidences that class III PI3K/VPS34 is the key PI3K isoform regulating apical recycling. A substractive approach, comparing in Opossum Kidney (OK) cells a pan‐class I/II/III PI3K inhibitor (LY294002) with a class I/II PI3K inhibitor (ZSTK474), suggested that class III PI3K/VPS34 inhibition induced selective apical endosome swelling and sequestration of the endocytic receptor, megalin/LRP‐2, causing surface down‐regulation. GFP‐(FYVE)x2 overexpression to sequester PI(3)P caused undistinguishable apical endosome swelling. In mouse kidney proximal tubular cells, conditional Vps34 inactivation also led to vacuolation and intracellular megalin redistribution. We next report that removal of LY294002 from LY294002‐treated OK cells induced a spectacular burst of recycling tubules and restoration of megalin surface pool. Acute triggering of recycling tubules revealed recruitment of dynamin‐GFP and dependence of dynamin‐GTPase, guidance directionality by microtubules, and suggested that a microfilamentous net constrained endosomal swelling. We conclude that (i) besides its role in endosome fusion, PI3K‐III is essential for endosome fission/recycling; and (ii) besides its role in endocytic entry, dynamin also supports tubulation of recycling endosomes. The unleashing of recycling upon acute reversal of PI3K inhibition may help study its dynamics and associated machineries. 相似文献
14.
It is widely recognized that after endocytosis, internalized cargo is delivered to endosomes that act as sorting stations. The limiting membrane of endosomes contain specialized subregions, or microdomains, that represent distinct functions of the endosome, including regions competing for cargo capture leading to degradation or recycling. Great progress has been made in defining the endosomal protein coats that sort cargo in these domains, including Retromer that recycles transmembrane cargo, and ESCRT (endosomal sorting complex required for transport) that degrades transmembrane cargo. In this review, we discuss recent work that is beginning to unravel how such coat complexes contribute to the creation and maintenance of endosomal microdomains. We highlight data that indicates that adjacent microdomains do not act independently but rather interact to cross-regulate. We posit that these interactions provide an agile means for the cell to adjust sorting in response to extracellular signals and intracellular metabolic cues. 相似文献
15.
RILP is emerging as a key regulator of late endocytic pathway by functioning as a downstream effector of activated Rab7 and Rab34, while ESCRT-I-->ESCRT-II-->ESCRT-III machinery acts in sorting proteins to the multivesicular body (MVB) initiated at the early/sorting endosome. We show here that the early machinery is integrated with the late machinery through a novel regulatory loop in which RILP interacts with VPS22 and VPS36 of ESCRT-II to mediate their membrane recruitment. The N-terminal and C-terminal half of RILP mediate interaction with VPS22 and VPS36, respectively. Overexpression of RILP leads to enlarged and clustered MVBs marked by lysobisphosphatidic acid (LBPA). In addition, RILP or its C-terminal fragment causes a retardation of sorting internalized EGF to the degradation route at the level of sorting endosomes marked by EEA1. We propose that RILP-->ESCRT-II serves as a regulatory/feedback loop to govern the coordination of early and late parts of the endocytic pathway. 相似文献
16.
Suzanne J. Norwood Daniel J. Shaw Nathan P. Cowieson David J. Owen Rohan D. Teasdale Brett M. Collins 《Traffic (Copenhagen, Denmark)》2011,12(1):56-71
Retromer is a peripheral membrane protein complex that has pleiotropic roles in endosomal membrane trafficking. The core of retromer possesses three subunits, VPS35, VPS29 and VPS26, that play different roles in binding to cargo, regulatory proteins and complex stabilization. We have performed an investigation of the thermodynamics of core retromer assembly using isothermal titration calorimetry (ITC) demonstrating that VPS35 acts as the central subunit to which VPS29 and VPS26 bind independently. Furthermore, we confirm that the conserved PRLYL motif of the large VPS35 subunit is critical for direct VPS26 interaction. Heat capacity measurements of VPS29 and VPS26 binding to VPS35 indicate extensive binding interfaces and suggest conformational alterations in VPS29 or VPS35 upon complex formation. Solution studies of the retromer core using small‐angle X‐ray scattering allow us to propose a model whereby VPS35 forms an extended platform with VPS29 and VPS26 bound at distal ends, with the potential for forming dimeric assemblies. 相似文献
17.
18.
磷脂酰肌醇-3-激酶 (PI3K) 是一种胞内磷脂酰肌醇激酶,在介导细胞生长、发育、分裂、分化和凋亡等过程中发挥重要作用,因此 PI3K 抑制剂的开发已成为当前抗癌新药研究的热点之一。目前已有多个 PI3K 抑制剂进入临床研究阶段或已上市,其单用或与其他药物联 用的疗效和安全性有待进一步临床验证。综述 PI3K 抑制剂作为抗肿瘤药物的临床研究进展,为其进一步研究与应用提供参考。 相似文献
19.
KRISTINA M. MCNYSET 《Biological journal of the Linnean Society. Linnean Society of London》2009,96(2):282-295
There are many hypotheses of relationships, and also of speciation processes, in North American freshwater fishes, although, to date, there have been no direct tests of whether there is evidence of ecological niche conservatism. In the present study, ecological niche modeling is used to look for evidence of ecological niche conservatism in six clades of freshwater fishes: the starheaded topminnows, sand darters, black basses, Notropis rubellus species group, Notropis longirostris species group, and the Hybopsis amblops species group. This is achieved by evaluating the reciprocal predictivity of distributional predictions based on ecological niche models developed for each individual taxon in a clade under the assumption that high reciprical predictivity between sister species can be taken as evidence of niche conservatism. Omission percentages, total and average commission, and the area under the curve in a receiver operating characteristic analysis, where calculated, are used to evaluate predictive ability. Occurrence data for each species were subset into a training and independent validation data set where possible. Across all clades and species, models predicted the validation data for a given species well. Ecological niche conservatism was found generally across the starheaded topminnows, the sand darters, and the N. longirostris species group. There was some inter-predictivity within the N. rubellus group, but almost no inter-predictivity within the black basses, indicating a lack of conservatism. These results demonstrate that ecological niches generally act as stable constraints on freshwater fish distributions in North America. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 282–295. 相似文献
20.
Claudia Mattissek 《Molecular membrane biology》2014,31(4):111-119
The endosomal sorting complexes required for transport (ESCRT) are needed for three distinct cellular functions in higher eukaryotes: (i) Multivesicular body formation for the degradation of transmembrane proteins in lysosomes, (ii) midbody abscission during cytokinesis and (iii) retroviral budding. Not surprisingly, loss of ESCRT function has severe consequences, which include the failure to down-regulate growth factor receptors leading to deregulated mitogenic signaling. While it is clear that the function of the ESCRT machinery is important for embryonic development, its role in cancer is more controversial. Various experimental approaches in different model organisms arrive at partially divergent conclusions regarding the contribution of ESCRTs to tumorigenesis. Therefore the aim of this review is to provide an overview on different model systems used to study the role of the ESCRT machinery in cancer development, to highlight common grounds and present certain controversies in the field. 相似文献