首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitin, a homopolymer of β-1-4-linked N-acetylglucosamine synthesized by chitin synthase A (Chs-A), is organized in the procuticle of the postembryonic cuticle or exoskeleton, which is composed of laminae stacked parallel to the cell surface to give stability and integrity to the underlying insect epidermal and other tissues. Our previous work has revealed an important role for two proteins from Tribolium castaneum named Knickkopf (TcKnk) and Retroactive (TcRtv) in postembryonic cuticular chitin maintenance. TcKnk and TcRtv were shown to be required for protection and organization of newly synthesized procuticular chitin. To study the functions of TcKnk and TcRtv in serosal and larval cuticles produced during embryogenesis in T. castaneum, dsRNAs specific for these two genes were injected into two week-old adult females. The effects of dsRNA treatment on ovarial integrity, oviposition, egg hatching and adult survival were determined. Insects treated with dsRNA for chitin synthase-A (TcChs-A) and tryptophan oxygenase (TcVer) were used as positive and negative controls for these experiments, respectively. Like TcChs-A RNAi, injection of dsRNA for TcKnk or TcRtv into adult females exhibited no adult lethality and oviposition was normal. However, a vast majority of the embryos did not hatch. The remaining (∼10%) of the embryos hatched into first instar larvae that died without molting to the second instar. Chitin content analysis following TcKnk and TcRtv parental RNAi revealed approximately 50% reduction in chitin content of eggs in comparison with control TcVer RNAi, whereas TcChs-A dsRNA-treatment led to >90% loss of chitin. Furthermore, transmission electron microscopic (TEM) analysis of serosal cuticle from TcChs-A, TcKnk and TcRtv dsRNA-treated insects revealed a complete absence of laminar organization of serosal (and larval) procuticle in comparison with TcVer dsRNA-treated controls, which exhibited normal laminar organization of procuticular chitin. The results of this study demonstrate that in addition to their essential roles in maintenance and organization of chitin in epidermal cuticle in larval and later stages of insect development, TcKnk and TcRtv also are required for egg hatch, chitin maintenance and laminar organization of both serosal and larval cuticle during embryonic development of T. castaneum.  相似文献   

2.
Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates.  相似文献   

3.
Mosquito eggs are laid in water but freshly laid eggs are susceptible to dehydration, if their surroundings dry out at the first hours of development. During embryogenesis of different mosquito vectors the serosal cuticle, an extracellular matrix, is produced; it wraps the whole embryo and becomes part of the eggshell. This cuticle is an essential component of the egg resistance to desiccation (ERD). However, ERD is variable among species, sustaining egg viability for different periods of time. While Aedes aegypti eggs can survive for months in a dry environment (high ERD), those of Anopheles aquasalis and Culex quinquefasciatus in the same condition last, respectively, for one day (medium ERD) or a few hours (low ERD). Resistance to desiccation is determined by the rate of water loss, dehydration tolerance and total amount of water of a given organism. The ERD variability observed among mosquitoes probably derives from diverse traits. We quantified several attributes of whole eggs, potentially correlated with the rate of water loss: length, width, area, volume, area/volume ratio and weight. In addition, some eggshell aspects were also evaluated, such as absolute and relative weight, weight/area relationship (herein called surface density) and chitin content. Presence of chitin specifically in the serosal cuticle as well as aspects of endochorion external surface were also investigated. Three features could be related to differences on ERD levels: chitin content, directly related to ERD, the increase in the egg volume during embryogenesis and the eggshell surface density, which were both inversely related to ERD. Although data suggest that the amount of chitin in the eggshell is relevant for egg impermeability, the participation of other yet unidentified eggshell attributes must be considered in order to account for the differences in the ERD levels observed among Ae. aegypti, An. aquasalis and Cx. quinquefasciatus.  相似文献   

4.

Background

Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1) and membrane-bound (Tre-2) trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported.

Principal Findings

The membrane-bound trehalase of Spodoptera exigua (SeTre-2) was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1) and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi) of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA) and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB) expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%.

Conclusions

SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2 has an important role in CHSB expression and chitin synthesis in the midgut.  相似文献   

5.
The insect cuticle plays important roles in numerous physiological functions to protect the body from invasion of pathogens, physical injury and dehydration. In this report, we conducted a comprehensive genome-wide search for genes encoding proteins with peritrophin A-type (ChtBD2) chitin-binding domain (CBD) in the silkworm, Bombyx mori. One of these genes, which encodes the cuticle protein BmCBP1, was additionally cloned, and its expression and location during the process of development and molting in B. mori were investigated. In total, 46 protein-coding genes were identified in the silkworm genome, including those encoding 15 cuticle proteins analogous to peritrophins with one CBD (CPAP1s), nine cuticle proteins analogous to peritrophins with three CBD (CPAP3s), 15 peritrophic membrane proteins (PMPs), four chitinases, and three chitin deacetylases, which contained at least one ChtBD2 domain. Microarray analysis indicated that CPAP-encoding genes were widely expressed in various tissues, whereas PMP genes were highly expressed in the midgut. Quantitative polymerase chain reaction and western blotting showed that the cuticle protein BmCBP1 was highly expressed in the epidermis and head, particularly during molting and metamorphosis. An immunofluorescence study revealed that chitin co-localized with BmCBP1 at the epidermal surface during molting. Additionally, BmCBP1 was notably up-regulated by 20-hydroxyecdysone treatment. These results provide a genome-level view of the chitin-binding protein in silkworm and suggest that BmCBP1 participates in the formation of the new cuticle during molting.  相似文献   

6.
The insect cuticle is a unique material that covers the exterior of the animal as well as lining the foregut, hindgut, and tracheae. It offers protection from predators and desiccation, defines body shape, and serves as an attachment site for internal organs and muscle. It has demonstrated remarkable variations in hardness, flexibility and elasticity, all the while being light weight, which allows for ease of movement and flight. It is composed primarily of chitin, proteins, catecholamines, and lipids. Proteomic analyses of cuticle from different life stages and species of insects has allowed for a more detailed examination of the protein content and how it relates to cuticle mechanical properties. It is now recognized that several groups of cuticular proteins exist and that they can be classified according to conserved amino acid sequence motifs. We have annotated the genome of the tobacco hornworm, Manduca sexta, for genes that encode putative cuticular proteins that belong to seven different groups: proteins with a Rebers and Riddiford motif (CPR), proteins analogous to peritrophins (CPAP), proteins with a tweedle motif (CPT), proteins with a 44 amino acid motif (CPF), proteins that are CPF-like (CPFL), proteins with an 18 amino acid motif (18 aa), and proteins with two to three copies of a C-X5-C motif (CPCFC). In total we annotated 248 genes, of which 207 belong to the CPR family, the most for any insect genome annotated to date. Additionally, we discovered new members of the CPAP family and determined that orthologous genes are present in other insects. We established orthology between the M. sexta and Bombyx mori genes and identified duplication events that occurred after separation of the two species. Finally, we utilized 52 RNAseq libraries to ascertain gene expression profiles that revealed commonalities and differences between different tissues and developmental stages.  相似文献   

7.
Several benzoylphenyl urea-derived insecticides such as diflubenzuron (DFB, Dimilin) are in wide use to control various insect pests. Although this class of compounds is known to disrupt molting and to affect chitin content, their precise mode of action is still not understood. To gain a broader insight into the mechanism underlying the insecticidal effects of benzoylphenyl urea compounds, we conducted a comprehensive study with the model beetle species and stored product pest Tribolium castaneum (red flour beetle) utilizing genomic and proteomic approaches. DFB was added to a wheat flour-based diet at various concentrations and fed to larvae and adults. We observed abortive molting, hatching defects and reduced chitin amounts in the larval cuticle, the peritrophic matrix and eggs. Electron microscopic examination of the larval cuticle revealed major structural changes and a loss of lamellate structure of the procuticle. We used a genomic tiling array for determining relative expression levels of about 11,000 genes predicted by the GLEAN algorithm. About 6% of all predicted genes were more than 2-fold up- or down-regulated in response to DFB treatment. Genes encoding enzymes involved in chitin metabolism were unexpectedly unaffected, but many genes encoding cuticle proteins were affected. In addition, several genes presumably involved in detoxification pathways were up-regulated. Comparative 2D gel electrophoresis of proteins extracted from the midgut revealed 388 protein spots, of which 7% were significantly affected in their levels by DFB treatment as determined by laser densitometry. Mass spectrometric identification revealed that UDP-N-acetylglucosamine pyrophosphorylase and glutathione synthetase were up-regulated. In summary, the red flour beetle turned out to be a good model organism for investigating the global effects of bioactive materials such as insect growth regulators and other insecticides. The results of this study recapitulate all of the different DFB-induced symptoms in a single model insect, which have been previously found in several different insect species, and further illustrate that DFB treatment causes a wide range of effects at the molecular level.  相似文献   

8.
9.
10.
The transporting function of many branched tubular networks like our lungs and circulatory system depend on the sizes and shapes of their branches. Understanding the mechanisms of tube size control during organ development may offer new insights into a variety of human pathologies associated with stenoses or cystic dilations in tubular organs. Here, we present the first secreted luminal proteins involved in tube diametric expansion in the Drosophila airways. obst-A and gasp are conserved among insect species and encode secreted proteins with chitin binding domains. We show that the widely used tracheal marker 2A12, recognizes the Gasp protein. Analysis of obst-A and gasp single mutants and obst-A; gasp double mutant shows that both genes are primarily required for airway tube dilation. Similarly, Obst-A and Gasp control epidermal cuticle integrity and larval growth. The assembly of the apical chitinous matrix of the airway tubes is defective in gasp and obst-A mutants. The defects become exaggerated in double mutants indicating that the genes have partially redundant functions in chitin structure modification. The phenotypes in luminal chitin assembly in the airway tubes are accompanied by a corresponding reduction in tube diameter in the mutants. Conversely, overexpression of Obst-A and Gasp causes irregular tube expansion and interferes with tube maturation. Our results suggest that the luminal levels of matrix binding proteins determine the extent of diametric growth. We propose that Obst-A and Gasp organize luminal matrix assembly, which in turn controls the apical shapes of adjacent cells during tube diameter expansion.  相似文献   

11.
In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects.  相似文献   

12.
The physical properties of cuticle are determined by the structure of its two major components, cuticular proteins (CPs) and chitin, and, also, by their interactions.A common consensus region (extended R&R Consensus) found in the majority of cuticular proteins, the CPRs, binds to chitin. Previous work established that β-pleated sheet predominates in the Consensus region and we proposed that it is responsible for the formation of helicoidal cuticle. Remote sequence similarity between CPRs and a lipocalin, bovine plasma retinol binding protein (RBP), led us to suggest an antiparallel β-sheet half-barrel structure as the basic folding motif of the R&R Consensus. There are several other families of cuticular proteins. One of the best defined is CPF. Its four members in Anopheles gambiae are expressed during the early stages of either pharate pupal or pharate adult development, suggesting that the proteins contribute to the outer regions of the cuticle, the epi- and/or exo-cuticle. These proteins did not bind to chitin in the same assay used successfully for CPRs. Although CPFs are distinct in sequence from CPRs, the same lipocalin could also be used to derive homology models for one A. gambiae and one Drosophila melanogaster CPF. For the CPFs, the basic folding motif predicted is an eight-stranded, antiparallel β-sheet, full-barrel structure. Possible implications of this structure are discussed and docking experiments were carried out with one possible Drosophila ligand, 7(Z),11(Z)-heptacosadiene.  相似文献   

13.
14.
A model is described for the action of insect molting chitinase on chitin microfibrils in cuticle. The model reconciles the disparate structures proposed for chitin in the literature. It also accounts for the kinetic characteristics of molting fluid chitinase insofar as known from in vitro studies, viz. positive co-operativity of possibly three catalytic sites, complexity, and processivity. These have hitherto been difficult to account for in vivo, given the arrangement of chitin in anhydrous microfibrils in arthropod cuticle.  相似文献   

15.
Organ and tissue formation requires a finely tuned temporal and spatial regulation of differentiation programmes. This is necessary to balance sufficient plasticity to undergo morphogenesis with the acquisition of the mature traits needed for physiological activity. Here we addressed this issue by analysing the deposition of the chitinous extracellular matrix of Drosophila, an essential element of the cuticle (skin) and respiratory system (tracheae) in this insect. Chitin deposition requires the activity of the chitin synthase Krotzkopf verkehrt (Kkv). Our data demonstrate that this process equally requires the activity of two other genes, namely expansion (exp) and rebuf (reb). We found that Exp and Reb have interchangeable functions, and in their absence no chitin is produced, in spite of the presence of Kkv. Conversely, when Kkv and Exp/Reb are co-expressed in the ectoderm, they promote chitin deposition, even in tissues normally devoid of this polysaccharide. Therefore, our results indicate that both functions are not only required but also sufficient to trigger chitin accumulation. We show that this mechanism is highly regulated in time and space, ensuring chitin accumulation in the correct tissues and developmental stages. Accordingly, we observed that unregulated chitin deposition disturbs morphogenesis, thus highlighting the need for tight regulation of this process. In summary, here we identify the genetic programme that triggers the timely and spatially regulated deposition of chitin and thus provide new insights into the extracellular matrix maturation required for physiological activity.  相似文献   

16.
The multifunctional insect cuticle serves as the exoskeleton, determines body shape, restricts water loss, provides attachment sites for muscles and internal organs and is a formidable barrier to invaders. It is morphologically divided into three layers, including envelope, epicuticle, and procuticle and is composed of chitin and cuticular proteins (CPs). Annotation of CPs and their cognate genes may help understand the structure and functions of insect cuticles. In this paper, we interrogated the genome of Pteromalus puparum, an endoparasitoid wasp that parasitizes Pieris rapae and Papilio xuthus pupae, and identified 82 genes encoding CPs belonging to six CP families, including 62 in the CPR family, 8 in CPAP3, 5 in CPF/CPFL, 2 low complexity proteins, 2 in TWDL, and 3 in Apidermin. We used six RNA-seq libraries to determine CP gene expression profiles through development and compared the cuticle hydrophobicity between the P. puparum and the ectoparasitoid Nasonia vitripennis based on GRAVY values of CPR sequences. In the Nasonia-Pteromalus comparison, we found in both N. vitripennis and P. puparum, the peak of their CPR hydrophobicity displayed at their pupal stage, whereas their adult stage showed the lowest level. Except at the adult stage, the CPR hydrophobicity in N. vitripennis is always higher than P. puparum. Finally, we identified three novel Apidermin genes, a family found solely in Hymenoptera and revealed a new sequence feature of this family. This new information contributes to a broader understanding of insect CPs generally.  相似文献   

17.
18.
19.
The nature of the interaction of insect cuticular proteins and chitin is unknown even though about half of the cuticular proteins sequenced thus far share a consensus region that has been predicted to be the site of chitin binding. We previously predicted the preponderance of beta-pleated sheet in the consensus region and proposed its responsibility for the formation of helicoidal cuticle (Iconomidou et al., Insect Biochem. Mol. Biol. 29 (1999) 285). Consequently, we have also verified experimentally the abundance of antiparallel beta-pleated sheet in the structure of cuticle proteins (Iconomidou et al., Insect Biochem. Mol. Biol. 31 (2001) 877). In this work, based on sequence and secondary structure similarity of cuticle proteins, and especially that of the consensus motif, to that of bovine plasma retinol binding protein (RBP), we propose by homology modelling an antiparallel beta-sheet half-barrel structure as the basic folding motif of cuticle proteins. This folding motif may provide the template for elucidating cuticle protein-chitin interactions in detail and reveal the precise geometrical formation of cuticle's helicoidal architecture. This predicted motif is another example where nature utilizes an almost flat protein surface covered by aromatic side chains to interact with the polysaccharide chains of chitin.  相似文献   

20.
Much of the variation among insects is derived from the different ways that chitin has been moulded to form rigid structures, both internal and external. In this study, we identify a highly conserved expression pattern in an insect‐only gene family, the Osiris genes, that is essential for development, but also plays a significant role in phenotypic plasticity and in immunity/toxicity responses. The majority of Osiris genes exist in a highly syntenic cluster, and the cluster itself appears to have arisen very early in the evolution of insects. We used developmental gene expression in the fruit fly, Drosophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant, Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare patterns of Osiris gene expression both during development and between alternate caste phenotypes in the polymorphic social insects. Developmental gene expression of Osiris genes is highly conserved across species and correlated with gene location and evolutionary history. The social insect castes are highly divergent in pupal Osiris gene expression. Sets of co‐expressed genes that include Osiris genes are enriched in gene ontology terms related to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle formation in both embryos and pupae, and genes co‐expressed with Osiris genes affect wing development. Additionally, Osiris genes and those co‐expressed seem to play a conserved role in insect toxicology defences and digestion. Given their role in development, plasticity, and protection, we propose that the Osiris genes play a central role in insect adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号