首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
泛素-蛋白酶体系统(ubiquitin-proteasome-system,UPS)是控制蛋白质降解的主要系统,也是细胞基本活动的关键调节器。去泛素化酶(deubiquitinating enzymes,DUBs)是泛素-蛋白酶体系统的组成部分,主要参与调节蛋白质泛素化和去泛素化的动态平衡,对细胞增殖、信号转导、神经病变或肿瘤发生意义重大。不同的DUBs在乳腺癌中的作用不同,最新发现去泛素化酶BAP1、OTUD3、ATXN3L主要调节乳腺癌细胞增殖,某些DUBs小分子抑制剂可以间接诱导三阴性乳腺癌细胞凋亡。本文主要综述这三个DUBs及去泛素化酶抑制剂在乳腺癌中的研究新进展,为寻找新型的乳腺癌分子靶向药物提供理论依据。  相似文献   

2.
The Wnt/β-catenin signalling pathway has important roles in normal cellular proliferation, development and angiogenesis. Many malignant transformations, including sporadic colorectal tumours, are caused by constitutive activation of the Wnt route due to mutations in the tumour suppressor protein adenomatous polyposis coli (APC) or the β-catenin oncogene, ultimately resulting in reduced β-catenin degradation by the ubiquitin (Ub) proteasome system (UPS). The COP9 signalosome (CSN) regulates the UPS by controlling cullin-RING Ub ligases (CRLs). We show here that the CSN and the β-catenin destruction complex cooperate in targeting β-catenin for degradation by the UPS. Together with the CRL that ubiquitinates β-catenin, they form a supercomplex responsible for β-catenin degradation. Wnt3A, glycogen synthase kinase 3β inhibitors or mutation of CSN-mediated deneddylation induce the disassembly of the supercomplex and the accumulation of β-catenin. Likewise, downregulation of the CSN in HeLa cells leads to retarded degradation of β-catenin. Additionally, we found that the knockdown of the CSN causes accelerated proteolysis of APC, an essential component of the β-catenin destruction complex, which is degraded by the UPS as β-catenin. We show here that APC is stabilised by the Ub-specific protease 15 (USP15) associated with the CSN. This is demonstrated by over-expression of siRNA oligonucleotides against USP15 or by over-expression of an USP15 mutant, which is unable to degrade poly-Ub chains. Thus, the CSN controls the Wnt/β-catenin signalling by assisting the assembly of β-catenin-degrading supercomplexes by deneddylation and, simultaneously, by stabilising APC via CSN-associated USP15. The CSN regulates the balance between β-catenin and APC. Disturbance of this balance can cause cancer by driving cell transformation, tumour angiogenesis and metastasis. A model is provided that proposes a role of CSN-mediated deneddylation in the formation of the β-catenin-degrading supercomplex and the protection of complex-bound APC via CSN-associated USP15.  相似文献   

3.
The ubiquitin–proteasome system (UPS) is indispensable to the protein quality control in eukaryotic cells. Due to the remarkable clinical success of using proteasome inhibitors for clinical treatment of multiple myeloma, it is anticipated that targeting the UPS upstream of the proteasome step be an effective strategy for cancer therapy. Deubiquitinases (DUB) are proteases that remove ubiquitin from target proteins and therefore regulate multiple cellular processes including some signaling pathways altered in cancer cells. Thus, targeting DUB is a promising strategy for cancer drug discovery. Previously, we have reported that metal complexes, such as copper and gold complexes, can disrupt the UPS via suppressing the activity of 19S proteasome-associated DUBs and/or of the 20S proteasomes, thereby inducing cancer cell death. In this study, we found that cadmium pyrithione (CdPT) treatment led to remarkable accumulation of ubiquitinated proteins in cultured cancer cells and primary leukemia cells. CdPT potently inhibited the activity of proteasomal DUBs (USP14 and UCHL5), but slightly inhibited 20S proteasome activity. The anti-cancer activity of CdPT was associated with triggering apoptosis via caspase activation. Moreover, treatment with CdPT inhibited proteasome function and repressed tumor growth in animal xenograft models. Our results show that cadmium-containing complex CdPT may function as a novel proteasomal DUB inhibitor and suggest appealing prospects for cancer treatment.  相似文献   

4.
Expression of microRNAs changes markedly in tumours and evidence indicates that they are causatively related to tumourigenesis, behaving as tumour suppressor microRNAs or onco microRNAs; in some cases they can behave as both depending on the type of cancer. Some tumour suppressor microRNAs appear to be an integral part of the p53 and Retinoblastoma (RB) network, the main regulatory pathways controlling senescence, a major tumour suppressor mechanism. The INK4a/ARF locus which codifies for two proteins, p19ARF and p16INK4a, plays a central role in senescence by controlling both p53 and RB. Recent evidence shows that the proto-oncogene leukaemia/lymphoma related factor, a p19ARF specific repressor, is controlled by miRNAs and that miRNAs, in particular miR-20a and miR-290, are causatively involved in mouse embryo fibroblasts (MEF) senescence in culture. Intriguingly, both miR-20a, member of the oncogenic miR-17-92 cluster, and miR-290, belonging to the miR-290-295 cluster, are highly expressed in embryonic stem (ES) cells. The pro-senescence role of miR-20a and miR-290 in MEF is apparently in contrast with their proliferative role in tumour and ES cells. We propose that miRNAs may exert opposing functions depending on the miRNAs repertoire as well as target/s level/s present in different cellular contexts, suggesting the importance of evaluating miRNAs activity in diverse genetic settings before their therapeutic use as tumour suppressors.  相似文献   

5.
Timely and faithful duplication of the entire genome depends on completion of replication. Replication forks frequently encounter obstacles that may cause genotoxic fork stalling. Nevertheless, failure to complete replication rarely occurs under normal conditions, which is attributed to an intricate network of proteins that serves to stabilize, repair and restart stalled forks. Indeed, many of the components in this network are encoded by tumour suppressor genes, and their loss of function by mutation or deletion generates genomic instability, a hallmark of cancer. Paradoxically, the same fork‐protective network also confers resistance of cancer cells to chemotherapeutic drugs that induce high‐level replication stress. Here, we review the mechanisms and major pathways rescuing stalled replication forks, with a focus on fork stabilization preventing fork collapse. A coherent understanding of how cells protect their replication forks will not only provide insight into how cells maintain genome stability, but also unravel potential therapeutic targets for cancers refractory to conventional chemotherapies.  相似文献   

6.
Selective protein degradation via the ubiquitin-proteasome system (UPS) plays an essential role in many major cellular processes, including host-pathogen interactions. We previously reported that the tightly regulated viral RNA-dependent RNA polymerase (RdRp) of the positive-strand RNA virus Turnip yellow mosaic virus (TYMV) is degraded by the UPS in infected cells, a process that affects viral infectivity. Here, we show that the TYMV 98K replication protein can counteract this degradation process thanks to its proteinase domain. In-vitro assays revealed that the recombinant proteinase domain is a functional ovarian tumour (OTU)-like deubiquitylating enzyme (DUB), as is the 98K produced during viral infection. We also demonstrate that 98K mediates in-vivo deubiquitylation of TYMV RdRp protein--its binding partner within replication complexes--leading to its stabilization. Finally, we show that this DUB activity contributes to viral infectivity in plant cells. The identification of viral RdRp as a specific substrate of the viral DUB enzyme thus reveals the intricate interplay between ubiquitylation, deubiquitylation and the interaction between viral proteins in controlling levels of RdRp and viral infectivity.  相似文献   

7.
8.
9.
Loss of heterozygosity (LOH) of tumour suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Recently, we and others have developed mouse models in which the frequency and nature of LOH events at an autosomal locus can be elucidated in genetically stable normal somatic cells. In this paper, an overview is presented of recent studies in LOH-detecting mouse models. Molecular mechanisms that lead to LOH and the effects of genetic and environmental variables are discussed. The general finding that LOH of a marker gene occurs frequently in somatic cells of the mouse without deleterious effects on cell viability, suggests that also tumour suppressor genes are lost in similar frequencies. LOH of tumour suppressor genes may thus be an initiating event in cancer development.  相似文献   

10.
Bromodomain and extra-terminal (BET) proteins are frequently overexpressed in various human cancers, therefore have been clinically pursed as attractive therapeutic anti-cancer targets. However, relatively little is known about the mechanism(s) underlying aberrant BET overexpression in human cancers. Recently, we reported that prostate cancer-derived SPOP mutants fail to interact with and promote BRD4 degradation, leading to accumulation of BRD4 in prostate cancer cells. As a result, prostate cancer cells harboring SPOP mutations are more resistant to BET inhibitors. Therefore, our results help to elucidate the tumor suppressor role of SPOP in the prostate cancer setting by negatively controlling BET proteins stability. More importantly, our results also provide a molecular basis for using combination with BET inhibitors and other inhibitors to treat prostate cancer patients with SPOP mutations.  相似文献   

11.
Exploiting a naturally occurring defense system, the immunotherapeutic approach embodies an ideal nontoxic treatment for cancer. Despite the evidence that immune effectors can play a significant role in controlling tumor growth either in natural conditions or in response to therapeutic manipulation, the cascade of molecular events leading to tumor rejection by the immune system remains to be fully elucidated. Nevertheless, some recent tumor immunology advancements might drastically change the way to design the next generation of cancer vaccines, hopefully improving the effectiveness of this therapeutic approach. In the present work, we will focus on three main areas of particular interest for the development of novel vaccination strategies: (a) cellular or molecular mechanisms of immune tolerance to malignant cells; (b) synergism between innate and adaptive immune response; (c) tumor-immune system interactions within the tumor microenvironment.  相似文献   

12.
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.  相似文献   

13.
The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin‐proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule‐deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO‐targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule‐deficient cells. Stress granule‐deficient cells showed an increase in the formation of mutant ataxin‐1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.  相似文献   

14.
Cervical cancer is rated the second most common malignant tumour globally, and is aetiologically linked to human papillomavirus (HPV) infection. Here the cellular pathology under consideration of stem/progenitor cell carcinogenesis is reviewed. Of the three causative molecular mechanisms of cervical cancer, two are associated with HPV: firstly, the effect of the viral oncogenes, E6 and E7; and secondly, integration of the viral DNA into chromosomal regions of tumour phenotype. The third process involved is the repetitive loss of heterozygosity in some chromosomal regions. HPV can be classified into high- and low-risk types; the high-risk types encode two oncoproteins, E6 and E7, which interact with tumour suppressor proteins. The association results in the inactivation of tumour suppressor proteins and the abrogation of apoptosis. Apoptosis is referred to as programmed cell death, whereby a cell deliberately commits suicide, and thus regulates cell numbers during development and maintenance of cellular homeostasis. This review attempts to elucidate the role of apoptotic genes, and considers external factors that interact with HPV in the development and progression of cervical cancer. Therefore, an in-depth understanding of the apoptotic genes that control molecular mechanisms in cervical cancer are of critical importance. Useful targets for therapeutic strategies would be those that alter apoptotic pathways in a manner where the escape of HPV from surveillance by the host immune system is prevented. Such an approach directed at the apoptotic genes maybe useful in the treatment of cervical cancer.  相似文献   

15.
16.
The development of so-called immune checkpoint inhibitors (ICIs), which target specific molecular processes of tumour growth, has had a transformative effect on cancer treatment. Widespread use of antibody-based medicines to inhibit tumour cell immune evasion by modulating T cell responses is becoming more common. Despite this, response rates are still low, and secondary resistance is an issue that arises often. In addition, a wide range of serious adverse effects is triggered by enhancing the immunological response. As a result of an increased mortality rate, a higher prevalence of thrombotic complications is connected with an increased incidence of immunological reactions, complement activation, and skin toxicity. This suggests that the tumour microenvironment's interaction between coagulation and inflammation is important at every stage of the tumour's life cycle. The coagulation system's function in tumour formation is the topic of this review. By better understanding the molecular mechanisms in which tumour cells circulate, plasmatic coagulation and immune system cells are engaged, new therapy options for cancer sufferers may be discovered.  相似文献   

17.
Ubiquitin–proteasome system (UPS) is a selective proteolytic system that is associated with the expression or function of target proteins and participates in various physiological and pathological processes of breast cancer. Inhibitors targeting the 26S proteasome in combination with other drugs have shown promising therapeutic effects in the clinical treatment of breast cancer. Moreover, several inhibitors/stimulators targeting other UPS components are also effective in preclinical studies, but have not yet been applied in the clinical treatment of breast cancer. Therefore, it is vital to comprehensively understand the functions of ubiquitination in breast cancer and to identify potential tumor promoters or tumor suppressors among UPS family members, with the aim of developing more effective and specific inhibitors/stimulators targeting specific components of this system.  相似文献   

18.
Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.  相似文献   

19.
Pathways of the molecular pathogenesis of colorectal carcinoma have been extensively studied and molecular lesions during the development of the disease have been revealed. High up in the list of colorectal cancer lesions are APC (adenomatous polyposis coli), K-ras, Smad4 (or DPC4-deleted in pancreatic cancer 4) and p53 genes. All these molecules are part of important pathways for the regulation of cell proliferation and apoptosis and as a result perturbation of these processes lead to carcinogenesis. The ubiquitin-proteasome system (UPS) is comprised of a multi-unit cellular protease system that regulates several dozens of cell proteins after their ligation with the protein ubiquitin. Given that among these proteins are regulators of the cell cycle, apoptosis, angiogenesis, adhesion and cell signalling, this system plays a significant role in cell fate and carcinogenesis. UPS inhibition has been found to be a pre-requisite for apoptosis and is already clinically exploited with the proteasome inhibitor bortezomib in multiple myeloma. Cyclooxygenase-2 (Cox-2) is the inducible form of the enzyme that metabolizes the lipid arachidonic acid to prostaglandin H2, the first step of prostaglandins production. This enzyme is up-regulated in colorectal cancer and in several other cancers. Inhibition of Cox-2 by aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been found to inhibit proliferation of colorectal cancer cells and in epidemiologic studies has been shown to reduce colon polyp formation in genetically predisposed populations and in the general population. NSAIDs have also Cox-independent anti-proliferative effects. Targeted therapies, the result of increasingly understanding carcinogenesis in the molecular level, have entered the field of anti-neoplastic treatment and are used by themselves and in combination with chemotherapy drugs. Combinations of targeted drugs have started also to be investigated. This article reviews the molecular pathogenesis of colorectal cancer, the roles of UPS and Cox-2 in it and puts forward a rational for their combined inhibition in colorectal cancer treatment.  相似文献   

20.
Much remains to be learned about how cancer cells acquire the property of migration, a prerequisite for invasiveness and metastasis. Loss of p53 functions is assumed to be a crucial step in the development of many types of cancers, leading to dysregulation of cell cycle checkpoint controls and apoptosis. However, emerging evidence shows that the contribution of the tumour suppressor p53 to the control of tumorigenesis is not restricted to its well-known anti-proliferative activities, but is extended to other stages of cancer development, i.e. the modulation of cell migration. This interesting alternative function has been proposed in light of the effect of p53 on specific features of migrating cells, including cell spreading, establishment of cell polarization and the production of protrusions. The effects of p53 on cell motility are largely mediated through the regulation of Rho signalling, thereby controlling actin cytoskeletal organization. These recent studies connect the regulation of proliferation to the control of cell migration and define a new concept of p53 function as a tumour suppressor gene, suggesting that p53 might be involved in tumour invasion and metastasis. This review focuses on emerging data concerning the properties of p53 that contribute to its atypical role in the regulation of cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号