首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca2+ stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.  相似文献   

2.
Molting and metamorphosis are essential events for arthropod development, and juvenile hormone (JH) and its precursors play critical roles for these events. We examined the regulation of JH biosynthesis by the corpora allata (CA) in Bombyx mori, and found that intact brain-corpora cardiaca (CC)–CA complexes produced a smaller amount of JH than that in CC–CA complexes and CA alone throughout the 4th and 5th (last) instar stadium. The smaller amount of synthesis was due to allatostatin-C (AST-C) produced by the brain. The CC synthesized short neuropeptide F (sNPF) that also suppressed the JH synthesis, but only in day 3 4th stadium and after the last larval ecdysis. For the suppression, both peptides prevented the expression of some of the distinct JH biosynthetic enzymes in the mevalonate pathway. Allatotropin (AT) stimulated sNPF expression in the CC of day 1 5th instar stadium, not of day 3 4th; therefore the stage-specific inhibition of JH synthesis by sNPF was partly due to the stimulative action of AT on the sNPF expression besides the stage-specific expression of the sNPF receptors in the CA, the level of which was high in day 2 4th and day 0 5th instar larvae. The cessation of JH biosynthesis in the last instar larvae is a key event to initiate pupal metamorphosis, and both sNPF and AST-C are key factors in shutting down JH synthesis, along with the decline of ecdysone titer and dopamine.  相似文献   

3.
4.
《Insect Biochemistry》1988,18(8):867-872
Activity of the corpora allata (CA) in vitro of adult female Gryllus bimaculatus was studied following incorporation of radioactivity from [2-14C]acetate and l-[methyl-3H]methionine into juvenile hormone III (JH III) and its immediate precursor methyl farnesoate (MF). Spontaneously active glands from females reared at 27°C utilized exogenous labelled acetate extensively for synthesis of MF and JH III (incorporation 80–84% at 2 mM acetate). 10−7 to 10−5 M exogenous JH III in the incubation medium had no effect on the rate of JH biosynthesis in spontaneously active glands. At 10−4 M JH III incorporation of acetate into JH III was reduced. The amount of MF was also lowered. JH III treatment (10−8–10−6 M) of spontaneously inactive glands led to an increase in the amount of MF. This increase was due to a de novo synthesis. Exogenous farnesol (20–200 μM) increased JH III biosynthesis and the amount of MF, but suppressed [2-14C]acetate incorporation. Dilution of the endogenous precursors is probably the most important cause of this suppression. As shown by the abnormally high MF levels in farnesol treated glands, epoxidation seems to be a rate-limiting step under certain experimental conditions.  相似文献   

5.
Abstract: The activities of pyruvate dehydrogenase, citrate synthase, and choline acetyltransferase in rat brain synaptosomes increased during on-togenesis by 3 and 14 times, respectively. Activity of ATP-citrate lyase decreased by 26% during the same period. Pyruvate consumption by synapto-somes from 1-day-old animals was 40% lower than that found in older rats; however, citrate efflux from intrasynaptosomal mitochondria in immature synaptosomes was over twice as high as that in mature ones. The rates of production of synaptoplasmic acetyl-CoA, ATP-citrate lyase were 1.03, 1.40, and 0.49 nmol/min/mg protein in 1-, 10-day-old, and adult rats, respectively. 3-Bromopyruvate (0.5 m M ) inhibited pyruvate consumption by 70% and caused a complete block of citrate utilization by citrate lyase in every age group. Parameters of citrate metabolism in cerebellar synaptosomes were the same as those in cerebral ones. These data indicate that production of acetyl-CoA. from citrate in synaptoplasm may be regulated either by adaptative, age-dependent changes in permeability and carrier capacity of the mitochondrial membrane or by the inhibition of synthesis of intramitochondrial acetyl-CoA. ATP-citrate lyase activity is not a rate-limiting factor in this process. Metabolic fluxes of pyruvate to cytoplasmic citrate and acetyl-CoA. are presumably the same in both cholinergic and noncholinergic nerve endings. The significance of citrate release from intrasynaptosomal mitochondria as a regulatory step in acetylcholine synthesis is discussed.  相似文献   

6.
In potassium-depolarized synaptosomes Ca2+ inhibited oxidation of pyruvate (30%) and decreased the level of acetyl-CoA in intrasynaptosomal mitochondria (32%). On the other hand, Ca2+ facilitated provision of acetyl-CoA to synaptoplasm, since under these condition no change of synaptoplasmic acetyl-CoA and twofold stimulation of acetylcholine synthesis were found. However, in Ca2+-activated synaptosomes both synaptoplasmic acetyl-CoA and acetylcholine synthesis were suppressed by 1 mM (–)hydroxycitrate by 27 and 29%, respectively. It was not the case in resting synaptosomes. Dichloroacetate (0.05 mM) partially reversed the inhibitory effect of Ca2+ on pyruvate metabolism in synaptosomes and whole brain mitochondria. In Ca2+-stimulated synaptosomes, the dichloroacetate overcame suppressive effects of (–)hydroxycitrate on the level of synaptoplasmic acetyl-CoA and acetylcholine synthesis, but not on citrate clevage. It is concluded that dichloroacetate may improve the metabolism of acetylcholine in activated cholinergic terminals by increasing the production of acetyl-CoA in mitochondria and increasing its provision through the mitochondrial membrane to synaptoplasm by the transport system, independent of the ATP-citrate lyase pathway.  相似文献   

7.
8.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. A decrease in JH titer during the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa once again synthesizes JH, which plays an essential role in orchestrating reproductive maturation. In spite of the importance of Aedes aegypti as a vector, a detailed study of the changes of JH hemolymph titers during the gonotrophic cycle has never been performed. In the present studies, using a high performance liquid chromatography coupled to a fluorescent detector (HPLC–FD) method, we measured changes in JH levels in the hemolymph of female mosquitoes during the pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers during the gonotrophic cycle of female mosquito. Feeding high sugar diets resulted in an increase of JH titers, and mating also modified JH titers in hemolymph. In addition these studies confirmed that JH titer in mosquitoes is fundamentally determined by the rate of biosynthesis in the CA.  相似文献   

9.
Metabolic inhibitors were used in vitro in an attempt to elucidate the biochemical pathways by which lactate is converted to fatty acids by bovine adipose tissue. Subcutaneous adipose tissue samples were obtained by biopsy techniques from steers fed a high-energy ration. Kynurenate (α-2-diamino-γ-oxabenzenebutanoic acid) (5–10 mm), an inhibitor of acetyl-CoA carboxylase, and cerulenin (2,3-epoxy-4-oxo-7,10-dodecadienamide) (20–100 μg/ml), an inhibitor of the fatty acid synthetase enzyme complex, inhibited fatty acid synthesis from both acetate and lactate. The hydrogen acceptor, N-methylphenazonium methosulfate (10 μm) inhibited acetate but not lactate incorporation into fatty acids. α-Cyanohydroxycinnamate (5 mm) and phenylpyruvate (10 mm), which inhibit pyruvate entry into the mitochondria and pyruvate carboxylase, respectively, decreased lipogenesis from both acetate and lactate. The effects of phenylpyruvate on lipogenesis from acetate were greater in the presence of glucose plus insulin. Agaric acid (2-hydroxy-1,2,3-nonadecanetricarboxylic acid) (0.2 and 1.0 mm), which inhibits citrate efflux from the mitochondria also decreased lipogenesis from both acetate and lactate. Fluoroacetate (2.5 mm), an inhibitor of aconitate hydratase, had no effect on lipogenesis from acetate; but, in the presence of glucose or pyruvate, decreased lactate incorporation into fatty acids. n-Butylmalonate (5 mm), which blocks malate transport across the mitochondrial membrane, decreased lipogenesis from lactate but not acetate. Malate transport during lipogenesis is not associated with an operative malate:asparate shuttle in bovine adipose tissue, as indicated by the lack of effect of either 0.2 or 1.0 mm aminooxyacetate, a transaminase inhibitor, on lipogenesis from acetate or lactate. The results suggest a functional ATP-citrate lyase:NADP-malate dehydrogenase pathway in bovine subcutaneous adipose tissue and that this pathway may be involved in lipogenesis from acetate as well as lactate.  相似文献   

10.
The juvenile hormones (JHs) play a central role in insect reproduction, development and behavior. Interrupting JH biosynthesis has long been considered a promising strategy for the development of target-specific insecticides. Using a combination of RNAi, in vivo and in vitro studies we characterized the last unknown biosynthetic enzyme of the JH pathway, a fatty aldehyde dehydrogenase (AaALDH3) that oxidizes farnesal into farnesoic acid (FA) in the corpora allata (CA) of mosquitoes. The AaALDH3 is structurally and functionally a NAD+-dependent class 3 ALDH showing tissue- and developmental-stage-specific splice variants. Members of the ALDH3 family play critical roles in the development of cancer and Sjögren–Larsson syndrome in humans, but have not been studies in groups other than mammals. Using a newly developed assay utilizing fluorescent tags, we demonstrated that AaALDH3 activity, as well as the concentrations of farnesol, farnesal and FA were different in CA of sugar and blood-fed females. In CA of blood-fed females the low catalytic activity of AaALDH3 limited the flux of precursors and caused a remarkable increase in the pool of farnesal with a decrease in FA and JH synthesis. The accumulation of the potentially toxic farnesal stimulated the activity of a reductase that converted farnesal back into farnesol, resulting in farnesol leaking out of the CA. Our studies indicated AaALDH3 plays a key role in the regulation of JH synthesis in blood-fed females and mosquitoes seem to have developed a “trade-off” system to balance the key role of farnesal as a JH precursor with its potential toxicity.  相似文献   

11.
The anaerobic hyperthermophilic archaea Desulfurococcus amylolyticus, Hyperthermus butylicus, Thermococcus celer, Pyrococcus woesei, the hyperthermophilic bacteria Thermotoga maritima and Clostridium thermohydrosulfuricum and the aerobic mesophilic archaeon Halobacterium saccharovorum were grown either on complex media, on sugars or on pyruvate as carbon and energy sources. During growth acetate was formed as fermentation product by all organisms. The enzymes involved in acetyl-CoA formation from pyruvate and in acetate formation from acetyl-CoA were investigated:
  1. Cell extracts of all species, both archaea and bacteria, catalyzed the coenzyme A-dependent oxidative decarboxylation of pyruvate with viologen dyes or with Clostridium pasteurianum ferredoxin as electron acceptors indicating a pyruvate: ferredoxin oxidoreductase to be operative in acetyl-CoA formation from pyruvate.
  2. Cell extracts of all archaeal species, both hyperthermophiles (D. amylolyticus, H. butylicus, T. celer, P. woesei) and the mesophile H. saccharovorum, contained an acetyl-CoA synthetase (ADP forming), which catalyzes both acetate formation from acetyl-CoA and ATP synthesis from ADP and phosphate (Pi): Acetyl-CoA+ADP+Pi?Acetate + ATP+CoA. Phosphate acetyltransferase and acetate kinase could not be detected.
  3. Cell extracts of the hyperthermophilic (eu)bacteria T. maritima and C. thermohydrosulfuricum contained phosphate acetyltransferase and acetate kinase rather than acetyl-CoA synthetase (ADP forming).
These data indicate that acetyl-CoA synthetase (ADP forming) represents a typical archaeal property rather than an enzyme specific for hyperthermophiles. It is proposed that in all acetate forming archaea the formation of acetate and of ATP from acetyl-CoA, ADP and Pi are catalyzed by acetyl-CoA synthetase (ADP forming), whereas in all acetate forming (eu)bacteria these reactions are catalyzed by two enzymes, phosphate acetyltransferase and acetate kinase.  相似文献   

12.
R. Berger  F.A. Hommes 《BBA》1973,314(1):1-7
The effect of ATP on the velocity of oxygen uptake during the oxidation of pyruvate plus malate, in the presence of oligomycin, 2,4-dinitrophenol and fluorocitrate, was studied in mitochondria, isolated from the livers of adult and fetal rats.It was found that the addition of ATP caused an inhibition in the rate of oxygen uptake of 21 ± 6% in mitochondria from adult rat liver and 49 ± 8% in mitochondria from fetal rat liver. Measurements of the velocity of oxygen uptake during the oxidation of pyruvate plus malate and of palmitoylcarnitine in adult rat liver mitochondria in the presence of ATP showed that the activity of pyruvate dehydrogenase was lower than the activity of citrate synthase.In fetal mitochondria, addition of ATP resulted in an increase in the CoASH/acetyl-CoA ratio, indicating that pyruvate dehydrogenase was rate limiting here as well.It is concluded that ATP inhibited pyruvate oxidation by phosphorylation of the pyruvate dehydrogenase complex, rather than by inhibiting citrate synthase under these conditions.  相似文献   

13.
The biosynthesis of the sesquiterpenoid juvenile hormone III (JH III) was studied using corpora allata of the cockroach Diploptera punctata incubated in vitro and a radiochemical assay for the hormone produced. The influence of several exogenous precursors such as glucose, trehalose, acetate, amino acids, and mevalonate on JH synthetic rates was studied. Glucose or trehalose were needed for an optimal rate of JH synthesis. Highest rates were achieved at trehalose concentrations below the normal hemolymph levels (35-40 mM). About one-third of the glucose utilized for the biosynthesis of JH III was metabolized through a pentose pathway, but acetyl-CoA derived from glucose was significantly diluted by acetyl-CoA from other sources. Amino acids provided both a source of carbon for JH III synthesis and a source of energy that allowed JH III synthesis from acetate and stimulated JH III synthesis from glucose. Acetate was a poor substrate, because it could not support JH III synthesis in long term incubations. The incorporation of exogenous mevalonate into JH III was dependent on the physiological state of the glands, but there was a significant dilution with endogenous mevalonate. This dilution reflected in part the poor penetration of mevalonate into the corpora allata cells, because JH synthesis in mevinolin-treated cells was not fully rescued by mevalonate.  相似文献   

14.
It now appears that arthropods produce and release a wider variety of juvenile hormones (JH) and related compounds than previously thought. For instance, in the adult crayfish, Procambarus clarkii, the mandibular organs, the homologous structure to insect corpora allata (CA), release both farnesoic acid (FA) and methyl farnesoate (MF), the immediate precursors of JH III, but not JH III itself. In larvae of the cockroach Diploptera punctata, JH III production ceases during the last half of the 4th stadium, but the CA continue to produce and release FA throughout this period. The embryos of the same species also release JH III and a product that coelutes with MF on HPLC. In adult blowfly, Calliphora vomitoria, the CA release JH III bisepoxide and possibly the 6,7-epoxide, in addition to JH III. In the lepidopteran species Pseudaletia unipuncta, male CA produce and release JH acids I, II, and III as well as a product which we have tentatively identified as homo-(and/or) dihomo-FA. In the females, CA produce and release the three common JH homologues and a product that we believe is the esterified version of the male compound, homo/dihomo-MF. Although the release of JH precursors from their sites of synthesis might result in their conversion to the active hormone in peripheral tissues, there is only limited evidence for such a process. Studies on biological activities of these compounds and on the developmental changes in biosynthesis and its regulation should provide information necessary for the defining of these compounds as hormones or otherwise and should improve our understanding of the evolution of the JH biosynthetic pathway in the phylum Arthropoda.  相似文献   

15.
16.
17.
18.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

19.
Leucoplasts were isolated from the endosperm of developing castor (Ricinis communis) endosperm using a discontinuous Percoll gradient. The rate of fatty acid synthesis was highest when malate was the precursor, at 155 nanomoles acetyl-CoA equivalents per milligram protein per hour. Pyruvate and acetate also were precursors of fatty acid synthesis, but the rates were approximately 4.5 and 120 times less, respectively, than when malate was the precursor. When acetate was supplied to leucoplasts, exogenous ATP, NADH, and NADPH were required to obtain maximal rates of fatty acid synthesis. In contrast, the incorporation of malate and pyruvate into fatty acids did not require a supply of exogenous reductant. Further, the incorporation of radiolabel into fatty acids by leucoplasts supplied with radiolabeled malate, pyruvate, or acetate was reduced upon coincubation with cold pyruvate or malate. The data suggest that malate and pyruvate may be good in vivo sources of carbon for fatty acid synthesis and that, in these preparations, leucoplast fatty acid synthesis may be limited by activity at or downstream of the acetyl-CoA carboxylase reaction.  相似文献   

20.
1. Although citrate is known to activate purified preparations of acetyl-CoA carboxylase, it had no stimulatory effect on the incorporation of [14C]acetate into long-chain fatty acids in a whole homogenate of rat liver (S0.7) under conditions in which the activity of acetyl-CoA carboxylase was rate-limiting for fatty acid synthesis. 2. The rate of incorporation of acetyl carbon into fatty acids was estimated in S0.7 preparations incubated with [14C]acetate, by measuring the specific radioactivity of the acetyl carbon of acetyl-CoA and the incorporation of 14C into fatty acids. These estimates were compared with estimates of acetyl-CoA carboxylase activity in the S0.7 preparation obtained by direct assay in conditions in which the enzyme was in the fully activated state. 3. In the absence of citrate, incorporation of acetyl carbon into fatty acids was about 75% of the value expected if the acetyl-CoA carboxylase in the S0.7 preparation were in the fully activated state. 4. Incorporation of acetyl carbon into fatty acids in the S0.7 preparation was stimulated by citrate, but the effect was many times less than the stimulation of [14C]acetate incorporation by citrate in particle-free preparations. 5. When the mitochondria and microsomes were removed from the S0.7 preparation, [14C]acetate incorporation into fatty acids fell to a negligible value and the preparation became highly sensitive to stimulation by citrate. 6. It is suggested that in the presence of mitochondria and microsomes, and in the intact liver cell, the degree of activation of acetyl-CoA carboxylase is such that citrate activation may not be of physiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号