首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Genomics》2020,112(6):4203-4207
Insect neuropeptides play a major role in the regulation of the physiological processes. Due to their versatile effects on the development of insects, their corresponding receptors, which are mostly G-protein coupled receptors, are considered as ideal targets for designing next-generation pesticides. In this study, we aimed to find neuropeptide receptors of pine processionary moth (Thaumetopoea pityocampa), a pest in the Mediterranean countries, that feeds on the needles of pine trees. To this aim, Whole Genome Shotgun sequencing technique was used. de novo assembly of the genome was performed using two different assemblers, SGA and MaSuRCA. The results of two assemblers were compared, and MaSuRCA assembler showed higher N50 length. To find some target GPCRs, sequences of Drosophila melanogaster and evolutionarily close species were used as blast queries in the assembled data. Five GPCRs were chosen from the genome and their expression was confirmed in the larval stage of the insect.  相似文献   

2.
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell, occupying the highest hierarchical positions in the regulation of many physiological processes. Although they have been extensively studied in a number of model insects, there have been few investigations of GPCRs in large Lepidopterans, such as Bombyx mori, an organism that provides a means to perform detailed tissue expression analyses, which may help to characterize GPCRs and their ligands. In addition, B. mori, also known as the silkworm, is an insect of substantial economic importance, due to its use in silk production and traditional medicines. In this work, we computationally identified 90 putative GPCRs in B. mori, 33 of which represent novel proteins. These GPCRs were annotated and compared with their homologs in Drosophila melanogaster and Anopheles gambiae. Phylogenetics analyses of the GPCRs from these three insects showed that GPCRs may easily duplicate or disappear during insect evolution, especially in the neuropeptide and protein hormone receptor subfamily. Interestingly, we observed a decrease in the quantity and diversity of the stress-tolerance gene, Methuselah, in B. mori, which may be related to its long history of domestication. Moreover, the presence of many Bombyx-specific GPCRs suggests that neither Drosophila nor Anopheles is good representatives for the GPCRs in the Class Insecta.  相似文献   

3.
The disruption of chemical communication between insects and host plants may take place due to an interference with the signal‐emitting host plant, or the signal‐receiving insect, compromising the signal production and emission, or its reception and processing. Anthropogenic compounds, in general, and pesticides, in particular, may impair the chemical communication that mediates host location by insects. Five different pesticides (the insecticides malathion, pyrethrins and spinetoram, and the fungicides fenhexamid and pyrimethanil) were applied at their field rates to raspberry fruits, or Petri dishes enclosing adult spotted wing Drosophila (SWD; Drosophila suzukii), and the attraction to fruit volatiles was evaluated in a series of two‐choice flight bioassays. The application of raspberry fruit with pesticides did not statistically affect attraction of unexposed adults, with exceptions being the spinetoram treatment, which led to mild insect avoidance, and the pyrethrin treatment, which resulted in slightly preferential attraction. In contrast, adults sublethally exposed to the pesticides had their flight take‐off impaired by the insecticides, but not by the fungicides. Furthermore, all pesticides, and particularly the insecticides, compromised the upwind capture of adults. Thus, the treatment with pesticides may indeed interfere with the flight response of SWD to host volatiles, particularly when the insects were previously exposed to pesticides. These findings are suggestive of the potential for sublethal insecticidal exposures to aid pest control and also provide evidence that pesticide use may compromise sampling/trapping strategies for this pest species that are based on attraction to host volatiles.  相似文献   

4.
Arthropod hormone receptors are potential targets for novel pesticides as they regulate many essential physiological and behavioral processes. The majority of them belong to the superfamily of G protein-coupled receptors (GPCRs). We have focused on characterizing arthropod kinin receptors from the tick and mosquito. Arthropod kinins are multifunctional neuropeptides with myotropic, diuretic, and neurotransmitter function. Here, a method for systematic analyses of structure-activity relationships of insect kinins on two heterologous kinin receptor-expressing systems is described. We provide important information relevant to the development of biostable kinin analogs with the potential to disrupt the diuretic, myotropic, and/or digestive processes in ticks and mosquitoes.The kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini), and the mosquito Aedes aegypti (Linnaeus), were stably expressed in the mammalian cell line CHO-K1. Functional analyses of these receptors were completed using a calcium bioluminescence plate assay that measures intracellular bioluminescence to determine cytoplasmic calcium levels upon peptide application to these recombinant cells. This method takes advantage of the aequorin protein, a photoprotein isolated from luminescent jellyfish. We transiently transfected the aequorin plasmid (mtAEQ/pcDNA1) in cell lines that stably expressed the kinin receptors. These cells were then treated with the cofactor coelenterazine, which complexes with intracellular aequorin. This bond breaks in the presence of calcium, emitting luminescence levels indicative of the calcium concentration. As the kinin receptor signals through the release of intracellular calcium, the intensity of the signal is related to the potency of the peptide.This protocol is a synthesis of several previously described protocols with modifications; it presents step-by-step instructions for the stable expression of GPCRs in a mammalian cell line through functional plate assays (Staubly et al., 2002 and Stables et al., 1997). Using this methodology, we were able to establish stable cell lines expressing the mosquito and the tick kinin receptors, compare the potency of three mosquito kinins, identify critical amino acid positions for the ligand-receptor interaction, and perform semi-throughput screening of a peptide library. Because insect kinins are susceptible to fast enzymatic degradation by endogenous peptidases, they are severely limited in use as tools for pest control or endocrinological studies. Therefore, we also tested kinin analogs containing amino isobutyric acid (Aib) to enhance their potency and biostability. This peptidase-resistant analog represents an important lead in the development of biostable insect kinin analogs and may aid in the development of neuropeptide-based arthropod control strategies.  相似文献   

5.
The effects and extent of the impacts of agricultural insect pests in and around cropping systems is a rich field of study. However, little research exists on the presence and consequence of pest insects in undisturbed landscapes distant from crop hosts. Research in such areas may yield novel or key insights on pest behavior or ecology that is not evident from agroecosystem-based studies. Using the invasive fruit pest Drosophila suzukii (Matsumura) as a case study, we investigated the presence and resource use patterns of this agricultural pest in wild blackberries growing within the southern Appalachian Mountain range of North Carolina over 2 years. We found D. suzukii throughout the sampled range with higher levels of infestation (D. suzukii eggs/g fruit) in all ripeness stages in natural areas when compared with cultivated blackberry samples, but especially in under-ripe fruit. We also explored a direct comparison of oviposition preference between wild and cultivated fruit and found higher oviposition in wild berries when equal weights of fruit were offered, but oviposition was higher in cultivated berries when fruit number was equal. Forest populations laid more eggs in unripe wild-grown blackberries throughout the year than populations infesting cultivated berries. This suggests D. suzukii may change its oviposition and foraging behavior in relation to fruit type. Additionally, as D. suzukii exploits a common forest fruit prior to ripeness, further research is needed to explore how this affects wild food web dynamics and spillover to regional agroecosystems.  相似文献   

6.
7.
8.
Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects.Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007, Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010, Puinean et al., 2013).The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and their biology.  相似文献   

9.
Non-native insect pests are often responsible for important damage to native and agricultural plant hosts. Since Drosophila suzukii Matsumura (Diptera: Drosophilidae) has become an important pest in North America and Europe (i.e., in 2008), the global production of soft thin-skinned fruits has faced severe production losses. In the southern Neotropical region, however, the first record of D. suzukii occurred in 2013 in the south of Brazil. It has also been recorded in Uruguay, Argentina, and Chile. Despite its recent occurrence in the southern Neotropical region, the fast dispersion of D. suzukii has inspired local research efforts in an attempt to mitigate the consequences of this insect pest invasion. In this forum, we explore the current status of D. suzukii in southern Neotropical regions, discussing its future perspectives. Additionally, we attempt to draft activities and a research agenda that may help to mitigate the losses caused by D. suzukii in native and commercial soft-skinned fruits produced in this region. Currently, D. suzukii appears to be well established in the south of Brazil, but considering the entire southern Neotropical region, the invasion panorama is still underinvestigated. The lack of studies and regulatory actions against D. suzukii has contributed to the invasion success of this species in this region. Considering several peculiarities of both the pest biology and the environmental of this region, the authors advocate for the need of intensive and integrative studies toward the development and implementation of area-wide integrated pest management programs against D. suzukii in the southern Neotropical region.  相似文献   

10.
Serotonin (5-hydroxytryptamine, 5-HT) plays a key role in modulating diverse physiological processes and behaviors in both protostomes and deuterostomes. These functions are mediated through the binding of serotonin to its receptors, which are recognized as potential insecticide targets. We investigated the sequence, pharmacology and tissue distribution of three 5-HT receptors (Piera5-HT1A, Piera5-HT1B, Piera5-HT7) from the small white butterfly Pieris rapae, an important pest of cultivated cabbages and other mustard family crops. Activation of Piera5-HT1A or Piera5-HT1B by 5-HT inhibited the production of cAMP in a dose-dependent manner. Stimulation of Piera5-HT7 with 5-HT increased cAMP level significantly. Surprisingly, with the exception of 5-methoxytryptamine, agonists including α-methylserotonin, 8-Hydroxy-DPAT and 5-carboxamidotryptamine activated these receptors poorly. The results are consistent with previous findings in Manduca sexta. All three receptors were blocked by methiothepin, but ketanserin and yohimbine were not effective. The selective mammalian 5-HT receptor antagonists SB 216641 and SB 269970 displayed potent inhibition effects on Piera5-HT1B and Piera5-HT7 respectively. The results we achieved here indicate that the pharmacological properties of Lepidoptera 5-HT receptors are quite different from those in other insects and vertebrates and may contribute to development of new selective pesticides. This study offers important information on three 5-HT receptors from P. rapae that will facilitate further analysis of the functions of 5-HT receptors in insects.  相似文献   

11.
The insect pests are real threat to farmers as they affect the crop yield to a great extent. The use of chemical pesticides for insect pest control has always been a matter of concern as they pollute the environment and are also harmful for human health. Bt (Bacillus thuringensis) technology helped the farmers to get rid of the insect pests, but experienced a major drawback due to the evolution of insects gaining resistance towards these toxins. Hence, alternative strategies are high on demand to control insect pests. RNA-based gene silencing is emerging as a potential tool to tackle with this problem. In this study, we have shown the use of artificial microRNA (amiRNA) to specifically target the ecdysone receptor (EcR) gene of Helicoverpa armigera (cotton bollworm), which attacks several important crops like cotton, tomato chickpea, pigeon pea, etc and causes huge yield losses. Insect let-7a precursor miRNA (pre-miRNA) backbone was used to replace the native miRNA with that of amiRNA. The precursor backbone carrying the 21 nucleotide amiRNA sequence targeting HaEcR was cloned in bacterial L4440 vector for in vitro insect feeding experiments. Larvae fed with Escherichia coli expressing amiRNA-HaEcR showed a reduction in the expression of target gene as well as genes involved in the ecdysone signaling pathway downstream to EcR and exhibited mortality and developmental defects. Stem-loop RT-PCR revealed the presence of amiRNA in the insect larvae after feeding bacteria expressing amiRNA-HaEcR, which was otherwise absent in controls. We also found a significant drop in the reproduction potential (oogenesis) of moths which emerged from treated larvae as compared to control. These results demonstrate the successful use of an insect pre-miRNA backbone to express amiRNA for gene silencing studies in insects. The method is cost effective and can be exploited as an efficient and alternative tool for insect pest management.  相似文献   

12.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a widely distributed pest species of soft-skinned fruits. Recent studies suggest the use of sterile insect technique (SIT) as a control method for this species; however, many factors can impact effectiveness of a SIT programme, including the environmental conditions. Environmental condition is critical at the time of the release and in the days afterwards, since it may impact sterile insects’ survival and ability to mate. Thus, we verified the influence of temperature and relative humidity on mating and survival of fertile and sterile D. suzukii, when insects were food provided or deprived. Highest mating rates occurred when sterile or fertile flies provided with food were exposed to 25ºC or 81%–100% relative humidity, while temperatures of 10 and 35ºC and humidity below 60% impaired mating. Overall, mating rate among food-deprived flies was low in all temperatures and humidity levels tested, but fertile insects were more prone to mate when compared to sterile flies. Survival was negatively influenced by high temperatures, low relative humidity and food deprivation. The information present in this study is useful to be considered for release of sterile D. suzukii.  相似文献   

13.
Spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), is a serious invasive pest of berries and cherries in the U.S. and Europe and has become a major phytosanitary trade barrier. In this pilot study, we explored the potential of using stand-alone ethyl formate (EF) treatment and a combinatory treatment of EF and cold temperature as postharvest control options for D. suzukii in imported blueberries. Stand-alone EF fumigations were effective against D. suzukii with LCt99% of 207.7 and 168.5 g·h·m?3 for eggs, the most tolerant life stage, at 5 and 21 °C, respectively. In a scale-up (10 m3) trial conducted at 5 °C, complete control of D. suzukii eggs placed inside and outside of blueberry boxes was achieved using 70 g·m?3 EF for 4 h with 5% blueberry loading ratio without deleterious impact on blueberry appearance such as soft spot or berry shrivel. In small scale pilot studies, 9-d stand-alone cold treatment at 5 °C was sufficient for complete control of D. suzukii eggs and larvae tested, but not pupae. The efficacy of this cold treatment appeared to be improved when D. suzukii eggs were first treated with low-dose EF (LCt50% level) prior to the cold treatment. The combination treatment resulted in complete mortality of D. suzukii eggs, larvae, and pupae tested after 7, 5, and 9 d of cold treatment, respectively. Together, these results suggest that stand-alone EF treatment, or the combination treatment of low-dose EF and cold as a systems approach may have a potential as postharvest treatments for D. suzukii in blueberries.  相似文献   

14.
Understanding the dynamics of pest insect populations in relation to the presence of non‐crop habitats and infestation levels of adjacent crops is essential to develop sustainable pest management strategies. The invasive pest species Drosophila suzukii (Diptera: Drosophilidae) is able to utilize a broad range of host plants. In viticulture, scientific risk assessment for D. suzukii has only recently started and studies assessing the effects of field margins containing wild host plants on D. suzukii population dynamics and on infestation risks in adjacent vineyards are lacking. Thus, in a one‐year field study, the role of different field margins on fly abundance and crop infestation in adjacent vineyards of Vitis vinifera, variety “Pinot Noir,” were investigated. Different monitoring methods were conducted to assess fly distribution, sex ratio and grape infestation in 14 vineyards adjacent to field margins containing either blackberry (BB) Rubus spp. or non‐host (NH) plants. Our results show that blackberries strongly enhanced D. suzukii abundance within field margin vegetation all year long, whereas fly abundance in vineyards adjacent to BB margins was just enhanced in some seasonal periods. Moreover, the influence of BB margins was limited by distance. However, high fly numbers in BB field margins did result in zero egg infestation of “Pinot Noir” berries. These results may have important implications for winegrowers to make efficient management decisions: regardless of high abundance of adult D. suzukii, only grape berry monitoring can assess the actual infestation risk and the potential need to take management action.  相似文献   

15.
Drosophila suzukii attacks on developing soft fruits have recently caused important economic losses in Europe. This study explores the effectiveness of a new control strategy against this insect pest that is based on a plant chitinase extracted from the latex of the Mediterranean spurge, Euphorbia characias. The ability of the purified Euphorbia latex chitinase (ELC) to degrade the chitin exoskeleton of D. suzukii was assessed using confocal laser scanning microscopy. ELC treatment caused reduced larval growth, higher mortality and notable degradation of external insect structures. Therefore, the chitinase may induce a double effect on the D. suzukii larvae, a direct injury on the larval bodies and an action as antifeedant. The effects of the ELC treatment were also tested on leaves of the insect's host plants, Fragaria × ananassa and Rubus idaeus, using physiological parameters (chlorophyll concentration, chlorophyll fluorescence, leaf gas exchange and water potential) and defence gene expression (FaPGIP, FaChi2_1 and FaChi2_2) as stress indicators. ELC at concentrations effective against D. suzukii did not damage the host plants. Only plant defence gene expression was somewhat enhanced during the early hours after ELC application. In conclusion, ELC, a natural product, proved to be an effective tool for use in the development of an environmentally friendly integrated management strategy against D. suzukii, a pest whose control by conventional chemical insecticides is problematic.  相似文献   

16.
邴孝利  陆益佳 《微生物学报》2019,59(10):1880-1888
斑翅果蝇是一种在全球范围内造成危害的重要水果害虫,其主要分布于亚、美、欧三大洲。斑翅果蝇的产卵器可以刺破水果表皮,将卵产在未完全成熟的水果中,卵孵化为幼虫后,幼虫取食水果,直接降低产量,从而对水果产业造成损失。近年以来,越来越多的研究表明昆虫微生物对宿主昆虫影响很大。例如昆虫微生物可以调控寄主昆虫的生长发育、个体适应性及生殖等。昆虫与其共生微生物间的关系成为昆虫生物学研究的热点内容。本文综述了近些年关于斑翅果蝇微生物多样性的研究,探讨了微生物菌群及内共生菌Wolbachia对斑翅果蝇生长发育、行为、生殖、抗病毒等的影响,以便为寻找控制斑翅果蝇种群的策略提供参考依据。  相似文献   

17.
Identifying insecticide resistance mechanisms is paramount for pest insect control, as the understandings that underpin insect control strategies must provide ways of detecting and managing resistance. Insecticide resistance studies rely heavily on detailed biochemical and genetic analyses. Although there have been many successes, there are also many examples of resistance that still challenge us. As a precursor to rational pest insect control, the biology of the insect, within the contexts of insecticide modes of action and insecticide metabolism, must be well understood. It makes sense to initiate this research in the best model insect system, Drosophila melanogaster, and translate these findings and methodologies to other insects. Here we explore the usefulness of the D. melanogaster model in studying metabolic-based insecticide resistances, target-site mediated resistances and identifying novel insecticide targets, whilst highlighting the importance of having a more complete understanding of insect biology for insecticide studies.  相似文献   

18.
Temperature is a determining factor for the development and establishment potential of insect pests. The present study describes the impact of temperature (13, 18, 23, 25, 28, 30, and 33 °C) on the life cycle parameters and phenotypic plasticity of South American populations of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the laboratory. Secondary objectives were to determine the lower thermal threshold and thermal constant to estimate the number of annual generations of the insect in small-fruit-producing regions in Brazil. The highest egg-to-adult survival was recorded at 23 and 25 °C. At 30 and 33 °C, no emergence of D. suzukii was observed. The egg-to-adult development time was shortest at 25 and 28 °C (ca. 10 days). The net reproductive rate (R0), and the intrinsic rate of population increase (rm) were highest at 23 and 25 °C. In contrast, temperatures of 13 and 28 °C generated largest and smallest body sizes, respectively, and caused reductions of 99 and 93% in R0. The estimated lower thermal threshold was 7.8 °C for egg-to-adult survival. The estimated thermal constant was 185.8 degree days, and the estimated annual number of generations of D. suzukii ranged from 17.1 in cold regions to 27.2 in warm regions. The results of the present study are important for understanding D. suzukii occurrence in the field, contributing to more informed and precise pest management.  相似文献   

19.
Agricultural landscapes rich in natural and semi-natural habitats promote biodiversity and important ecosystem services for crops such as pest control. However, semi-natural habitats may fail to deliver these services if agricultural pests are disconnected from the available pool of natural enemies, as may be the case with invasive species. This study aimed to provide insights into the relationship between landscape complexity and the abundance of the recently established invasive pest species Drosophila suzukii and a group of natural enemies (parasitoid wasps), which contain species that parasitize D. suzukii in native and invaded ecosystems. The importance of landscape complexity was examined at two spatial scales. At the field scale, the response to introduction of wildflower strips was analysed, while the relationship with forest cover was assessed at the landscape scale. Half of the surveys were done next to blueberry crops (Vaccinium corymbosum), the other half was done in landscapes without fruit crops to examine effects of D. suzukii host presence. As expected, the number of observed parasitoid wasps increased with amount of forest surrounding the blueberry fields, but the number of D. suzukii individuals likewise increased with forest cover. Establishment of wildflower strips did not significantly affect the abundance of D. suzukii or parasitoid wasps and insect phenology was similar in landscapes with and without blueberry crops. This suggests that D. suzukii is enhanced by landscape complexity and is largely unlinked from the species group that, in its native range, hosts key natural enemies. Although management practices that rely on enhancing natural enemies through habitat manipulations can contribute to the long-term stability of agroecosystems and to control agricultural pests, other control measures may still be necessary in the short term to counteract the benefits obtained by D. suzukii from natural habitats.  相似文献   

20.
Calcium acts as a second messenger in many cell types, including insect hemocytes. Intracellular calcium level has a definite role in innate and adaptive immune signaling. Biogenic amines such as octopamine (OA), tyramine (TA), dopamine (DA) and serotonin (5-HT) play various important physiological roles in insects by activating distinct G-protein-coupled receptors (GPCRs) that share a putative seven transmembrane domain structure. OA and 5-HT have been shown that can mediate insect hemocytic immune reactions to infections and invasions. Here, we showed that TA increase hemocyte spreading in the rice stem borer, Chilo suppressalis. Furthermore, we cloned a cDNA encoding a tyramine receptor type 2 from the hemocytes in the C. suppressalis, viz., CsTA2, which shares high sequence similarity to members of the invertebrate tyramine receptor family. The CsTA2 receptor was stably expressed in human embryonic kidney (HEK) 293 cells, and its ligand response has been examined. Receptor activation with TA induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in cells, with an EC50 value of 18.7 ± 5.3 nM, whereas OA, DA, 5-HT and other potential agonists did not have this response. The mRNA is present in various tissues including nerve cord, hemocytes, fat body, midgut, Malpighian tubules, and epidermis in the larval stage. Western blot analysis and immunohistochemistry assay displayed that CsTA2 was detected and presented on hemocytes. We also showed that TA induced Ca2+ release from the hemocytes of C. suppressalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号