首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three antimicrobial compounds produced by Bacillus sp. strain CS93 isolated from pozol were identified by using high-performance liquid chromatography and mass spectrometry. The three compounds were iturin, bacilysin, and chlorotetaine. Production of these compounds by CS93 could account for the medicinal properties attributed to pozol.  相似文献   

2.
The distribution of microorganisms in pozol balls, a fermented maize dough, was investigated by a polyphasic approach in which we used both culture-dependent and culture-independent methods, including microbial enumeration, fermentation product analysis, quantification of microbial taxa with 16S rRNA-targeted oligonucleotide probes, determination of microbial fingerprints by denaturing gradient gel electrophoresis (DGGE), and 16S ribosomal DNA gene sequencing. Our results demonstrate that DGGE fingerprinting and rRNA quantification should allow workers to precisely and rapidly characterize the microbial assemblage in a spontaneous lactic acid fermented food. Lactic acid bacteria (LAB) accounted for 90 to 97% of the total active microflora; no streptococci were isolated, although members of the genus Streptococcus accounted for 25 to 50% of the microflora. Lactobacillus plantarum and Lactobacillus fermentum, together with members of the genera Leuconostoc and Weissella, were the other dominant organisms. The overall activity was more important at the periphery of a ball, where eucaryotes, enterobacteria, and bacterial exopolysacharide producers developed. Our results also showed that the metabolism of heterofermentative LAB was influenced in situ by the distribution of the LAB in the pozol ball, whereas homolactic fermentation was controlled primarily by sugar limitation. We propose that starch is first degraded by amylases from LAB and that the resulting sugars, together with the lactate produced, allow a secondary flora to develop in the presence of oxygen. Our results strongly suggest that cultivation-independent methods should be used to study traditional fermented foods.  相似文献   

3.
The distribution of microorganisms in pozol balls, a fermented maize dough, was investigated by a polyphasic approach in which we used both culture-dependent and culture-independent methods, including microbial enumeration, fermentation product analysis, quantification of microbial taxa with 16S rRNA-targeted oligonucleotide probes, determination of microbial fingerprints by denaturing gradient gel electrophoresis (DGGE), and 16S ribosomal DNA gene sequencing. Our results demonstrate that DGGE fingerprinting and rRNA quantification should allow workers to precisely and rapidly characterize the microbial assemblage in a spontaneous lactic acid fermented food. Lactic acid bacteria (LAB) accounted for 90 to 97% of the total active microflora; no streptococci were isolated, although members of the genus Streptococcus accounted for 25 to 50% of the microflora. Lactobacillus plantarum and Lactobacillus fermentum, together with members of the genera Leuconostoc and Weissella, were the other dominant organisms. The overall activity was more important at the periphery of a ball, where eucaryotes, enterobacteria, and bacterial exopolysacharide producers developed. Our results also showed that the metabolism of heterofermentative LAB was influenced in situ by the distribution of the LAB in the pozol ball, whereas homolactic fermentation was controlled primarily by sugar limitation. We propose that starch is first degraded by amylases from LAB and that the resulting sugars, together with the lactate produced, allow a secondary flora to develop in the presence of oxygen. Our results strongly suggest that cultivation-independent methods should be used to study traditional fermented foods.  相似文献   

4.
Pozol is an acid beverage obtained from the natural fermentation of nixtamal (heat- and alkali-treated maize) dough. The concentration of mono- and disaccharides from maize is reduced during nixtamalization, so that starch is the main carbohydrate available for lactic acid fermentation. In order to provide some basis to understand the role of amylolytic lactic acid bacteria (ALAB) in this fermented food, their diversity and physiological characteristics were determined. Forty amylolytic strains were characterized by phenotypic and molecular taxonomic methods. Four different biotypes were distinguished via ribotyping; Streptococcus bovis strains were found to be predominant. Streptococcus macedonicus, Lactococcus lactis, and Enterococcus sulfureus strains were also identified. S. bovis strain 25124 showed extremely low amylase yield relative to biomass (139 U g [cell dry weight](-1)) and specific rate of amylase production (130.7 U g [cell dry weight](-1) h(-1)). In contrast, it showed a high specific growth rate (0.94 h(-1)) and an efficient energy conversion yield to bacterial cell biomass (0.31 g of biomass g of substrate(-1)). These would confer on the strain a competitive advantage and are the possible reasons for its dominance. Transient accumulation of maltooligosaccharides during fermentation could presumably serve as energy sources for nonamylolytic species in pozol fermentation. This would explain the observed diversity and the dominance of nonamylolytic lactic acid bacteria at the end of fermentation. These results are the first step to understanding the importance of ALAB during pozol fermentation.  相似文献   

5.
Nine phylogenetic oligonucleotide probes were used to describe at the genus level the microbial community responsible for the spontaneous fermentation of maize, leading to the production of Mexican pozol. Ribosomal RNAs of specific groups and genera, in particular, lactic acid bacteria, were quantified using a culture-independent approach. In the early stage of the fermentation, Lactococcus and Leuconostoc appeared to be the dominant genera. A contrario, these represented minor genera at the end of the fermentation when Lactobacillus dominated the process. In addition, eukaryotes seemed to play a significant role throughout the fermentation and enterobacteria could be detected by this method.  相似文献   

6.
Pozol is an acid beverage obtained from the natural fermentation of nixtamal (heat- and alkali-treated maize) dough. The concentration of mono- and disaccharides from maize is reduced during nixtamalization, so that starch is the main carbohydrate available for lactic acid fermentation. In order to provide some basis to understand the role of amylolytic lactic acid bacteria (ALAB) in this fermented food, their diversity and physiological characteristics were determined. Forty amylolytic strains were characterized by phenotypic and molecular taxonomic methods. Four different biotypes were distinguished via ribotyping; Streptococcus bovis strains were found to be predominant. Streptococcus macedonicus, Lactococcus lactis, and Enterococcus sulfureus strains were also identified. S. bovis strain 25124 showed extremely low amylase yield relative to biomass (139 U g [cell dry weight]−1) and specific rate of amylase production (130.7 U g [cell dry weight]−1 h−1). In contrast, it showed a high specific growth rate (0.94 h−1) and an efficient energy conversion yield to bacterial cell biomass (0.31 g of biomass g of substrate−1). These would confer on the strain a competitive advantage and are the possible reasons for its dominance. Transient accumulation of maltooligosaccharides during fermentation could presumably serve as energy sources for nonamylolytic species in pozol fermentation. This would explain the observed diversity and the dominance of nonamylolytic lactic acid bacteria at the end of fermentation. These results are the first step to understanding the importance of ALAB during pozol fermentation.  相似文献   

7.
Chondroitin sulfate (CS) is a symptomatic slow acting drug for osteoarthritis (OA) widely used for the treatment of this highly prevalent disease, characterized by articular cartilage degradation. However, little is known about its mechanism of action, and recent large scale clinical trials have reported variable results on OA symptoms. Herein, we aimed to study the modulations in the intracellular proteome and the secretome of human articular cartilage cells (chondrocytes) treated with three different CS compounds, with different origin or purity, by two complementary proteomic approaches. Osteoarthritic cells were treated with 200 μg/ml of each brand of CS. Quantitative proteomics experiments were carried out by the DIGE and stable isotope labeling with amino acids in cell culture (SILAC) techniques, followed by LC-MALDI-MS/MS analysis. The DIGE study, carried out on chondrocyte whole cell extracts, led to the detection of 46 spots that were differential between conditions in our study: 27 were modulated by CS1, 4 were modulated by CS2, and 15 were modulated by CS3. The SILAC experiment, carried out on the subset of chondrocyte-secreted proteins, allowed us to identify 104 different proteins. Most of them were extracellular matrix components, and 21 were modulated by CS1, 13 were modulated by CS2, and 9 were modulated by CS3. Each of the studied compounds induces a characteristic protein profile in OA chondrocytes. CS1 displayed the widest effect but increased the mitochondrial superoxide dismutase, the cartilage oligomeric matrix protein, and some catabolic or inflammatory factors like interstitial collagenase, stromelysin-1, and pentraxin-related protein. CS2 and CS3, on the other hand, increased a number of structural proteins, growth factors, and extracellular matrix proteins. Our study shows how, from the three CS compounds tested, CS1 induces the activation of inflammatory and catabolic pathways, whereas CS2 and CS3 induce an anti-inflammatory and anabolic response. The data presented emphasize the importance of employing high quality CS compounds, supported by controlled clinical trials, in the therapy of OA. Finally, the present work exemplifies the usefulness of proteomic approaches in pharmacological studies.  相似文献   

8.
Mass spectrometric techniques play a prominent role in the rapidly expanding field of high-throughput screening (HTS). In this paper, the authors present a novel qualitative approach for the screening of a small library of compounds using MALDI-TOF-MS and HPLC-ESI-MS/MS. Chymotrypsin (CT), a serine protease, was selected as the target protein. A well-known inhibitor of CT is chymostatin (CS), a naturally occurring peptide aldehyde, which is reported to be a mixture of 3 components-A, B, and C-differing only in one of the amino acids. The authors report that native CS mixture consists of 3 additional ring hydroxylated components and that each compound exists in 2 epimeric forms. In case of protein-binding compounds, only 1 of the epimers was found to be active. A unique feature of this study is the generation of a combinatorial library of CS derivatives applying a one-pot strategy followed by identification and structural elucidation of the library components. Analytical investigation of the library resulted in the identification of 22 compounds. After incubation with CT and centrifugal ultrafiltration, 10 compounds were detected as protein-binding ligands. Finally, the complementary potentials of MALDI-TOF-MS and HPLC-MS/MS in the screening of complex ligand mixtures have been discussed.  相似文献   

9.
Specific DNA fragments from the chromosome of Salmonella typhimurium LT2 were packaged in P22 capsids by induction of “locked-in” Mud-P22 hybrid prophages. High yields of the packaged DNA were obtained upon capsid disruption. DNA hybridization using a fragment of insertion sequence IS200 as probe permitted physical mapping of IS200 elements on the chromosome of S. typhimurium LT2 within?±1 centisome (CS). IS200 copies were found at the following locations: CS 24 (copy VI), CS 53 (copy V), CS 63 (copy I), CS 80 (copy II) and CS 93 (copy III). Copy IV, previously mapped near fliA (CS 42), was not included in our study.  相似文献   

10.
Here we show that a large chondroitin sulfate proteoglycan, versican, derived from a renal adenocarcinoma cell line ACHN, binds L-selectin, P-selectin, and CD44. The binding was mediated by the interaction of the chondroitin sulfate (CS) chain of versican with the carbohydrate-binding domain of L- and P-selectin and CD44. The binding of versican to L- and P-selectin was inhibited by CS B, CS E, and heparan sulfate (HS) but not by any other glycosaminoglycans tested. On the other hand, the binding to CD44 was inhibited by hyaluronic acid, chondroitin (CH), CS A, CS B, CS C, CS D, and CS E but not by HS or keratan sulfate. A cross-blocking study indicated that L- and P-selectin recognize close or overlapping sites on versican, whereas CD44 recognizes separate sites. We also show that soluble L- and P-selectin directly bind to immobilized CS B, CS E, and HS and that soluble CD44 directly binds to immobilized hyaluronic acid, CH, and all the CS chains examined. Consistent with these results, structural analysis showed that versican is modified with at least CS B and CS C. Thus, proteoglycans sufficiently modified with the appropriate glycosaminoglycans should be able to bind L-selectin, P-selectin, and/or CD44.  相似文献   

11.
Although the precise mechanism of action of cyclosporine (CS) is unknown, there is substantial evidence that CS preferentially acts on T cells by impairing lymphokine production. Recent studies have demonstrated that CS may also inhibit the functions of accessory cells and APC. Since topically applied CS inhibits contact sensitivity and epidermal Langerhans cells (LC) are very effective accessory cells and APC, we determined whether CS directly affects their accessory cell functions. Murine LC were pulsed with solvent control or with various doses of CS (up to 10 micrograms/ml) and then Con A-induced T cell proliferation was assayed. CS pulsing of LC caused, when compared with solvent control-pulsed LC, a dose-dependent decrease in T cell stimulation (up to 93%). LC fixed with paraformaldehyde after 2-h CS pulsing showed a similar degree of decreased accessory cell function, indicating that the immunosuppressive action is established by 2 h. The inhibitory capacity of CS pulsing on LC is not likely to be related to diminished IL-1 production, enhanced PG biosynthesis, or decreased surface Ia Ag intensity. The possibility of carryover of CS into the culture supernatants was ruled out by adding CS-pulsed LC or their supernatants to other T cell proliferative assays. Thus, these studies indicate that CS directly inhibits accessory cell functions of LC.  相似文献   

12.
The present study focused on the green synthesis of silver nanoparticles from Coriander sativum (CS) containing structural polymers, phenolic compounds and glycosidic bioactive macromolecules. Plant phenolic compounds can act as antioxidants, lignin, and attractants like flavonoids and carotenoids. Henceforth, silver nanoparticles (AgNPs) were prepared extracellularly by the combinatorial action of stabilizing and reduction of the CS leaf extract. The biologically synthesized CS-AgNPs were studied by UV-spectroscopy, zeta potential determination, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis to characterize and confirm the formation of crystalline nanoparticles. The synthesized nanoparticles demonstrated strong antimicrobial activity against all microbial strains examined with varying degrees. The scavenging action on free radicals by CS-AgNPs showed strong antioxidant efficiency with superoxide and hydroxyl radicals at different concentrations as compared with standard ascorbic acid. The presence of in vitro anticancer effect was confirmed at different concentrations on the MCF-7 cell line as revealed with decrease in cell viability which was proportionately related to the concentration of CS-AgNPs illustrating the toxigenic nature of synthesized nanoparticles on cancerous cells.  相似文献   

13.
Specific DNA fragments from the chromosome of Salmonella typhimurium LT2 were packaged in P22 capsids by induction of “locked-in” Mud-P22 hybrid prophages. High yields of the packaged DNA were obtained upon capsid disruption. DNA hybridization using a fragment of insertion sequence IS200 as probe permitted physical mapping of IS200 elements on the chromosome of S. typhimurium LT2 within ±1 centisome (CS). IS200 copies were found at the following locations: CS 24 (copy VI), CS 53 (copy V), CS 63 (copy I), CS 80 (copy II) and CS 93 (copy III). Copy IV, previously mapped near fliA (CS 42), was not included in our study. Received: 28 May 1997 / Accepted: 11 August 1997  相似文献   

14.
This study examined the effects of chondroitin sulfate (CS) alone and CS plus glucosamine sulfate (GS) in a dietary bar formulation on inflammatory parameters of adjuvant-induced arthritis and on the synthesis of interleukin-1beta (IL-1beta) and matrix metalloprotease-9 (MMP-9). Following 25 days pretreatment with dietary bars containing either CS alone, CS plus GS, or neither CS nor GS, rats were either sham injected or injected with Freund's complete adjuvant into the tail vein. Rats were fed their respective bars for another 17 days after inoculation. Parameters of disease examined included clinical score (combination of joint temperature, edema, hyperalgesia, and standing and walking limb function), incidence of disease, levels of IL-1beta in the serum and paw joints, levels of MMP-9 in the paw joints, paw joint histology, and joint cartilage thickness. Treatment with CS plus GS, but not CS alone, significantly reduced clinical scores, incidences of disease, joint temperatures, and joint and serum IL-1beta levels. Treatment with CS alone and CS plus GS inhibited the production of edema and prevented raised levels of joint MMP-9 associated with arthritis. Similarly, CS alone and CS plus GS treatment also prevented the development of cartilage damage associated with arthritis. Combination CS plus GS treatment in a dietary bar formulation ameliorates clinical, inflammatory, and histologic parameters of adjuvant-induced arthritis. The benefits of CS and GS in combination are more pronounced than those of CS alone. The reduction of arthritic disease by CS plus GS is associated with a reduction of IL-1beta and MMP-9 synthesis.  相似文献   

15.
The crystal structure of chorismate synthase (CS) from Streptococcus pneumoniae has been solved to 2.0 A resolution in the presence of flavin mononucleotide (FMN) and the substrate 5-enolpyruvyl-3-shikimate phosphate (EPSP). CS catalyses the final step of the shikimate pathway and is a potential therapeutic target for the rational design of novel antibacterials, antifungals, antiprotozoals, and herbicides. CS is a tetramer with the monomer possessing a novel beta-alpha-beta fold. The interactions between the enzyme, cofactor, and substrate reveal the structural reasons underlying the unique catalytic mechanism and identify the amino acids involved. This structure provides the essential initial information necessary for the generation of novel anti-infective compounds by a structure-guided medicinal chemistry approach.  相似文献   

16.
In the previous studies, we reported that carnosic acid (CA) and carnosol (CS) originating from rosemary protected cortical neurons by activating the Keap1/Nrf2 pathway, which activation was initiated by S-alkylation of the critical cysteine thiol of the Keap1 protein by the “electrophilic” quinone-type of CA or CS. Here, we found that CA and CS inhibited the in vitro differentiation of mouse preadipocytes, 3T3-L1 cells, into adipocytes. In contrast, other physiologically-active and rosemary-originated compounds were completely negative. These actions seemed to be mediated by activation of the antioxidant-response element (ARE) and induction of phase2 enzymes. This estimation is justified by our present findings that only CA and CS among rosemary-originated compounds significantly activated the ARE and induced the phase2 enzymes. Next, we performed cDNA microarray analysis in order to identify the gene(s) responsible for these biological actions and found that phase2 enzymes (Gsta2, Gclc, Abcc4, and Abcc1), all of which are involved in the metabolism of glutathione (GSH), constituted 4 of the top 5 CA-induced genes. Furthermore, CA and CS, but not the other compounds tested, significantly increased the intracellular level of total GSH. Thus, we propose that the stimulation of GSH metabolism may be a critical step for the inhibition of adipocyte differentiation in 3T3-L1 cells and suggest that pro-electrophilic compounds such as CA and CS may be potential drugs against obesity-related diseases.  相似文献   

17.
Skate cartilage is a fishery by-product, which contains chondroitin sulfate (CS), a glycosaminoglycan well known for its chondroprotective effect. Here described is a low-cost two-step process producing CS in non-denaturing conditions, consisting of an enzymatic extraction followed by tangential filtration to concentrate and purify CS. The performances of UF and MF membranes were compared in terms of flux and selectivity. The 0.1 microm-pore size membrane appeared to be the most efficient to separate CS from the other compounds.  相似文献   

18.

Background

Malaria greatly impacts the health and wellbeing of over half of the world''s population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd) based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI) responses.

Methods and Findings

BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA) or SLAM receptors adaptor protein (EAT-2). Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein''s suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.

Conclusion

Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly improve the induction of malaria antigen specific adaptive immune responses in vivo.  相似文献   

19.
Early in the pathological process of osteoarthritis (OA), subchondral bone remodelling, which is related to altered osteoblast metabolism, takes place. In the present study, we explored in human OA subchondral bone whether chondroitin sulfate (CS), glucosamine sulfate (GS), or both together affect the major bone biomarkers, osteoprotegerin (OPG), receptor activator of nuclear factor-kappa B ligand (RANKL), and the pro-resorptive activity of OA osteoblasts. The effect of CS (200 μg/mL), GS (50 and 200 μg/mL), or both together on human OA subchondral bone osteoblasts, in the presence or absence of 1,25(OH)2D3 (vitamin D3) (50 nM), was determined on the bone biomarkers alkaline phosphatase and osteocalcin, on the expression (mRNA) and production (enzyme-linked immunosorbent assay) of bone remodelling factors OPG and RANKL, and on the pro-resorptive activity of these cells. For the latter experiments, human OA osteoblasts were incubated with differentiated peripheral blood mononuclear cells on a sub-micron synthetic calcium phosphate thin film. Data showed that CS and GS affected neither basal nor vitamin D3-induced alkaline phosphatase or osteocalcin release. Interestingly, OPG expression and production under basal conditions or vitamin D3 treatment were upregulated by CS and by both CS and GS incubated together. Under basal conditions, RANKL expression was significantly reduced by CS and by both drugs incubated together. Under vitamin D3, these drugs also showed a decrease in RANKL level, which, however, did not reach statistical significance. Importantly, under basal conditions, CS and both compounds combined significantly upregulated the expression ratio of OPG/RANKL. Vitamin D3 decreased this ratio, and GS further decreased it. Both drugs reduced the resorption activity, and statistical significance was reached for GS and when CS and GS were incubated together. Our data indicate that CS and GS do not overly affect cell integrity or bone biomarkers. Yet CS and both compounds together increase the expression ratio of OPG/RANKL, suggesting a positive effect on OA subchondral bone structural changes. This was confirmed by the decreased resorptive activity for the combination of CS and GS. These data are of major significance and may help to explain how these two drugs exert a positive effect on OA pathophysiology.  相似文献   

20.
Two antimutagenicity databases were prepared by applying a co-treatment procedure to the Salmonella reversion assay. Ninety compounds belonging to various chemical classes were quantitatively tested for antimutagenicity towards the direct-acting mutagen 4-nitroquinoline 1-oxide (4NQO) in strain TA100 of S. typhimurium and 63 of them were additionally tested for antimutagenicity towards unfractionated mainstream cigarette smoke (CS) in strain TA98, in the presence of S9 mix. Twelve compounds (13.3%) inhibited 4NQO mutagenicity by at least 50%, with a MID50 (dose inhibiting 50% of mutagenicity) varying over a 1226-fold range. Twenty-six compounds (41.3%) inhibited CS mutagenicity, with a MID50 varying over a 520-fold range. Three compounds only, i.e., bilirubin, curcumin and myricetin, were capable of inhibiting the mutagenicities of both 4NQO and CS. However, myricetin and the other flavonoid rutin were at the same time mutagenic by inducing frameshift mutations following metabolic activation. There was a rather rigorous selectivity of antimutagenicity data depending on the chemical class of inhibitors and it was possible to discriminate protective effects within several pairs or series of structurally related compounds. For instance, all eight thiols and aminothiols inhibited 4NQO mutagenicity, which contrasted with the inactivity of the remaining 17 sulfur compounds tested, all of them lacking a free sulfhydryl group. The mutagenicity of CS was consistently inhibited by the majority of phenols (eight out of 10 tested) and by all two isothiocyanates, two dithiocarbamates, three indole derivatives, three tetrapyrrole compounds and three flavonoids tested. Although the results obtained cannot be extrapolated to other mutagens or test systems, they may provide a useful source of information for research in the area of antimutagenesis and for the development of chemopreventive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号