首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiology of the muscles associated with the vagina in the blood-feeding insect, Rhodnius prolixus Stal, was investigated with the use of Methylene Blue staining to visualize the anatomy, and a micro force transducer to record spontaneous and neurally-evoked contractions. The vagina is associated with a dorsal muscle and a set of paired lateral muscles. The dorsal muscle extends from the base of the common oviduct to apodemes located laterally on sternite VIII, the first genital segment. The lateral muscles extend from a medially-located apodeme on the posterior edge of sternite VI around each side of the common oviduct to travel posteriorly along the side of the vagina before inserting laterally on apodemes on sternite VIII. The vagina muscles display spontaneous and neurally-evoked contractions that are prolonged but transient. The response to evoked contractions shows that the muscles are innervated by both excitatory and inhibitory motor axons. The degree of tension generated by evoked contractions is dependent on the frequency of stimulation with maximal tension being generated at 20–30 Hz. This tension, which often exceeds 400 mg, is transient and returns to a baseline within 1 to 2 min during continuous stimulation. These results, which are the first to describe this chamber in this well-studied insect, are discussed with respect to the act of egg laying.  相似文献   

2.
Abstract Myogenic contractions of the heart of the female blood-feeding insect, Rhodnius prolixus (Stål), are inhibited by crude extracts of testes applied directly to isolated dorsal vessels. Dorsal vessels were observed with a stereo microscope and heart beats timed with a stopwatch. In normal Rhodnius saline, hearts contract at 14.8 ± 7.1 beats per minute (n= 45). Crude extracts of the testes and the two male reproductive accessory organs (the opaque and transparent accessory glands) were prepared from previously frozen tissue by homogenizing 5–20 glands in a small glass homogenizer containing Rhodnius saline, centrifuging for 5 min at 2 000 g, and collecting the supernatant. Testes extract as low as 1.0 glands per mL inhibit contractions whereas crude extracts of the opaque or transparent accessory glands have no consistent effect. We refer to this cardiac inhibitor as rhodtestolin (Rhodnius testis inhibitory factor), and discuss its possible effects on the female during copulation.  相似文献   

3.
A previous study by Davey [Can J Zool 4:243–249 (1987)] showed that egg production in the blood-feeding insect Rhodnius prolixus is greatly enhanced when the corpus allatum (CA) is denervated. This result supported findings of others that the brain of Rhodnius imposes an inhibition on the CA via its connections to the CA. The present study identifies the nervus corporis cardiacum II (NCCII) as the nerve responsible for this inhibitory influence. Transecting the NCCII before feeding causes a dramatic increase in the number of eggs made. Since the NCCII is a relatively small nerve that may contain only axons of lateral and posterior neurosecretory cells in the protocerebrum, this result suggests that one or both of these cell types produce the brain factor inhibiting egg production in this insect. Arch. Insect Biochem. Physiol. 39:126–131, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Severing the dorsal vessel (DV) behind the corpus allatum (CA), or in the anterior part of the abdomen of Rhodnius prolixus, greatly reduces egg production, an effect which is abolished by the topical application of juvenile hormone l (JH l). Severing the DV in the posterior abdomen does not result in a marked reduction of egg production, although severing the alary muscles in segments V and VI has a similar effect to severing the DV in the anterior abdomen. Reduced egg production caused by severing the DV on day 8 postemergence does not occur if the nerves connecting the CA to the brain are severed on day 1 post emergence. However, egg production is reduced if the DV is severed on day 1 post emergence and the connections between the brain and the CA severed on day 8, suggesting that inhibition of the CA caused by severance of the DV requires innervation from the brain. An isolated CA implanted into an animal decapitated immediately after feeding escapes from the inhibition imposed by severance of the DV. Conversely, the CA in an insect, the head of which has been decapitated just anterior to the CA, remains inhibited. This result suggests that the head posterior to the brain must be present to maintain inhibition. It is concluded that DV severance acts on the brain via some humoral influence to impose inhibition on the CA, and that an endocrine center in the head is required in order to maintain the inhibition.  相似文献   

5.
Summary The sensory receptor responsive to pressure applied internally to the ventral abdominal body wall of the blood-feeding insects, Rhodnius prolixus, is a single sense cell containing, at its distal end, a cilium enclosed within a scolopale, a densely staining structure characteristic of insect scolopidial sensilla. A small spherical structure lies within a dilation near the midregion of the cilium, and contains nine heavily staining bodies, the position of each corresponding to a pair of microtubules in the cilium. Proximal to the dilation, the microtubules are organized in a ring of nine pairs with one microtubule of each pair associated with dyneinlike arms. Dastal to the dilation a central pair of microtubules is present, but dyneinlike arms are absent. The scolopale cell, which gives risc to the scolopale, has cytoplasmic invaginations that form an elaborate array of extracellular compartments surrounding the body wall of the sense cell. These compartments may serve to dampen high frequency vibrations permitting the receptor to respond to pressure exerted by touch, an attribute in keeping with the receptor's proposed function of detecting abdominal distension related to the size and movement of the stomach.  相似文献   

6.
Gonzalez R  Orchard I 《Peptides》2008,29(4):545-558
The invertebrate neuropeptide Y (NPY) homolog, neuropeptide F (NPF), has been characterized for a wide range of invertebrate phyla, including platyhelminthes, molluscs, and arthropods. Current hypotheses suggest that NPF may be capable of regulating responses to diverse external cues related to nutritional status and feeding. The qualitative and quantitative distribution of an NPF-like peptide in fifth instar Rhodnius prolixus was undertaken using an antiserum raised against Drosophila NPF. Immunohistochemistry reveals NPF-like immunoreactive neurons and processes in the central nervous system, stomatogastric nervous system and peripheral nervous system. The distribution of NPF-like immunoreactivity within the medial neurosecretory cells of the brain and neurohemal areas of the corpus cardiacum and dorsal vessel, suggests NPF may act as a neurohormone. Immunoreactive processes are present over the surface of the hindgut and the immunoreactivity in these processes is greatly reduced in intensity 24h post-feeding. The quantification of partially purified NPF-like material in the CNS of R. prolixus was conducted by HPLC fractionation and radioimmunoassay. The results suggest that NPF-like material is present in fifth instar R. prolixus and likely released into the hemolymph following a blood meal.  相似文献   

7.
The embryonic development of the hemipteran insect Rhodnius prolixus was studied by use of contemporary light and electron microscopy. Embryos were staged according to days postoviposition. Eggs laid on day one complete blastoderm formation and anatrepsis, the first phase of blastokinesis, by day 5. The embryo develops in a cephalocaudal orientation which is 180° to the anteroposterior axis of the egg. Subsequent development, prior to the second phase of blastokinesis (katatrepsis), leads to segmentation of the germ band, evagination of appendages, and histogenesis of germ layers. Concomitantly with these events, the amnion undergoes dramatic change. By day 7 the embryo begins a 180° revolution while migrating to the ventral surface of the yolk. This restores its polarity with respect to that of the egg and facilitates hatching. The serosa contracts, pulling the amnion and embryo anteriorly. Eventually the serosa is internalized at a point dorsal to the head and the lateral walls of the embryo grow up and surround the yolk. Development continues until day 15 when the embryo hatches as a first instar larva.  相似文献   

8.
9.
Sarkar NR  Tobe SS  Orchard I 《Peptides》2003,24(10):1553-1562
Using a polyclonal antiserum to Dippu-allatostatin 7 (Dippu-AST 7; formerly AST 1) of the cockroach Diploptera punctata, we have demonstrated the presence of AST-like immunoreactivity (ALI) in cells and processes throughout the nervous system, gut, and peripheral tissues of unfed fifth instar and adult Rhodnius prolixus. ALI in apparent neurosecretory cells of the brain, suboesophageal ganglion, and mesothoracic ganglionic mass, as well as in midgut endocrine cells, suggests that Rhodnius allatostatins may act as neurohormones/hormones. The presence of ALI in possible interneurons and areas of neuropile throughout the CNS also suggests roles as neuromodulators and/or neurotransmitters. Dippu-AST 7 inhibits spontaneous and leucokinin 1 (LK 1)-induced contractions of the Rhodnius hindgut in a dose-dependent manner. The low concentrations capable of inhibiting both spontaneous (10(-12)M) and LK 1-induced contractions (10(-10) to 10(-9)M) suggest that ASTs may be acting as neurohormones/hormones on the hindgut. We have also shown that Dippu-AST 7 influences the muscle activity of the Rhodnius dorsal vessel at concentrations as low as 10(-11)M.  相似文献   

10.
An active corpus allatum (CA) in the blood feeding insect, Rhodnius prolixus, releases a substance that inhibits metamorphosis in larvae, and activates egg production in adults. In adults, transecting the nervus corporis cardiacum II's (NCCII), which are attached posteriorly to each protocerebral lobe, greatly increases egg production indicating that the adult CA is activated and receives neural inhibition from cells associated with the NCCII [Chiang, Arch. Insect. Biochem. Physiol. 39:126-131 (1998)]. In the present study, the NCCII's in fifth instar larvae were transected immediately before or after feeding to determine if these nerves normally inhibit CA activity in the last larval instar. Approximately 20 to 25 days following ingestion of a blood meal, L5's with transected NCCII's emerged as fully-formed adults with no larval characteristics. Examination of the brain in these recently emerged adults revealed that the NCCII's were absent. Since fifth instar larvae with transected NCCII's emerged with no juvenile characteristics, cutting the NCCII's did not activate the CA, indicating that the mechanism for inhibition of the CA differs in the last larval instar and adult animals.  相似文献   

11.
Kwok R  Chung D  Brugge VT  Orchard I 《Peptides》2005,26(1):43-51
The invertebrate tachykinin-related peptides (TRPs) with the conserved C-terminal sequence FX1GX2Ramide shows sequence similarity to the vertebrate tachykinins after which they are named, and are hypothesized to be ancestrally related. In this study a polyclonal antiserum generated against a locust tachykinin (LomTK I), was used to demonstrate the presence and describe the distribution of LomTK-like immnoreactivity in the CNS and gut of Rhodnius prolixus. Reverse phase high performance liquid chromatography (RP-HPLC) was used in combination with a sensitive radioimmunoassay (RIA) to demonstrate picomolar amounts of immunoreactive material in the CNS, and femptomolar amounts associated with the hindgut. Furthermore, the results from CNS extracts separated by RP-HPLC, suggest that at least two tachykinin isoforms exist in R. prolixus. A hindgut contraction assay was developed to quantify the myotropic effects of selected LomTKs on R. prolixus hindgut contraction. Both LomTK I and II caused an increase in the frequency of hindgut contractions with EC50 values of 3.6x10(-8)M and 3.8x10(-8)M for LomTK I and II, respectively.  相似文献   

12.
13.
Malaria parasites digest haemoglobin and detoxify the free haem by its sequestration into an insoluble dark-brown pigment known as haemozoin (Hz). Until recently, this pigment could be found only in Plasmodium parasites. However, we have shown that Hz is also present in the midgut of the blood-sucking insect Rhodnius prolixus [Oliveira et al. (1999) Nature 400, 517-518]. Here we show that Hz synthesis in the midgut of this insect is promoted by a particulate fraction from intestine lumen. Haem aggregation activity is heat-labile and is inhibited in vitro by chloroquine (CLQ). Inhibition of Hz formation in vivo by feeding insects with CLQ leads to increased levels of haem in the haemolymph of the insect, which resulted in increased lipid peroxidation. Taken together, these results indicate that a factor capable of promoting Hz crystallisation is present in R. prolixus midgut and that this activity represents an important physiological defence of this insect against haem toxicity.  相似文献   

14.
Te Brugge VA  Orchard I 《Peptides》2002,23(11):1967-1979
In Rhodnius prolixus, the rapid post-feeding diuresis is under neurohormonal control. While serotonin has been demonstrated to be a diuretic neurohormone [J Exp Biol 156 (1991) 557], a peptide is also known to be involved. Previously, we have demonstrated the presence of corticotropin releasing factor (CRF)-like and kinin-like peptides in the central nervous system (CNS) of 5th instar Rhodnius [J Exp Biol 202 (1999) 2017; Peptides 22 (2001) 161]. These peptides are present in neurohemal sites of the corpus cardiacum and are co-localized in neurohemal sites on abdominal nerves. While various CRF-like peptides have been demonstrated to increase Rhodnius Malpighian tubule secretion the kinin-like peptides do not [Peptides 23 (2002) 671]. The kinin-like peptides do however, increase hindgut contraction which may contribute to the rapid post feeding diuresis by the mixing of hemolymph and/or hindgut contents and the removal of wastes. The presence of these peptides in neurohemal sites suggests that they could be released into the hemolymph and act as neurohormones.We have used immunohistochemical techniques and radioimmunoassay (RIA) to demonstrate qualitative and quantitative changes of CRF-like and kinin-like peptides in the CNS associated with feeding. As well we have examined Malpighian tubule secretion in response to assays of hemolymph from unfed and fed insects. Hemolymph was also partially purified by Sep-Pak and HPLC and the fractions assayed for kinin-like immunoreactivity and the ability to stimulate Malpighian tubule secretion. The results suggest that both kinin-like and CRF-like peptides are neurohormones in Rhodnius, released in response to feeding.  相似文献   

15.
This review presents a new perspective on the circadian regulation and functions of insect developmental hormones. In Rhodnius prolixus (Hemiptera), the brain neuropeptide prothoracicotropic hormone (PTTH) is released with a circadian rhythm that is controlled by paired photosensitive clocks in the brain. These clocks comprise the dorsal and lateral PER/TIM clock neurons known to regulate behavioral rhythms in Drosophila. Axons of PTTH and clock cells make close contact. Photosensitive PER/TIM clocks also reside in the paired prothoracic glands (PGs), which generate rhythmic synthesis and release of the ecdysteroid molting hormones. The PG clocks are entrained by both light and PTTH. These four clocks are coupled together by both nerves and hormones into a timing system whose primary regulated output is the circadian rhythm of ecdysteroids in the hemolymph. This complex timing system appears necessary to ensure circadian organization of the gene expression that is induced in target cells by ecdysteroids via circadian cycling of the nuclear ecdysteroid receptor (EcR). This multioscillator system serves to transduce 'the day outside' into endocrine rhythms that orchestrate 'the day inside'. It has many functional similarities with vertebrate circadian systems.  相似文献   

16.
The blood-feeding bug, Rhodnius prolixus, ingests large blood meals, then undergoes a period of rapid diuresis which is under neurohormonal control. In both cockroach (Diploptera punctata) and fruit fly (Drosophila melanogaster) a calcitonin-like DH31 neuropeptide has been identified [Coast GM, Webster SG, Schegg KM, Tobe SS, Schooley DA. The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 2001;204:1795-804; Furuya K, Milchak RJ, Schegg KM, Zhang J, Tobe SS, Coast GM, et al. Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proc Natl Acad Sci USA 2000;97:6469-74] and demonstrated to be active on Malpighian tubule secretion [Coast GM, Webster SG, Schegg KM, Tobe SS, Schooley DA. The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 2001;204:1795-804; Furuya K, Milchak RJ, Schegg KM, Zhang J, Tobe SS, Coast GM, et al. Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proc Natl Acad Sci USA 2000;97:6469-74]. Using an antibody raised against D. punctata (Dippu) DH31, we demonstrate the presence of Dippu-DH31-like immunoreactivity in the CNS, salivary glands, hindgut and neurohemal sites of 5th instar Rhodnius. Double-label immunohistochemistry for Dippu-DH31-like and serotonin-like immunoreactivity demonstrates some co-localization of these factors in cells of the mesothoracic ganglionic mass (MTGM) and in neurohemal sites on the abdominal nerves. When tested on Rhodnius 5th instar Malpighian tubules, Dippu-DH31 stimulated minor increases in rate of secretion. Dippu-DH31 tested in combination with serotonin resulted in increases in the rate of secretion which were at least additive.  相似文献   

17.
18.
Cobalt applied extracellularly to the cephalic aorta in Rhodnius prolixus filled neurosecretory cells (NSCs) located in the brain, the retrocerebral complex, and the suboesophageal ganglion (SOG). Axons of these cells converged over the corpora cardiaca and corpus allatum and merged into a large tract before travelling posteriorly along the ventral side of the aorta. Cobalt-filled cells in the posterior margins of the brain and the retrocerebral complex lacked extensive dendritic arborizations, suggesting that their cell bodies and/or axonal processes in the retrocerebral complex are directly involved with integrative processes determining hormone release. Cobalt-filled cell bodies in the anterior region of the brain were closely associated with the ocellar nerve, and the cobalt-filled cells in the SOG formed extensive dendritic arborizations in the neuropile, suggesting the involvement of sensory cells in regulation of their electrical activity. The ability to fill NSCs with cobalt applied to the aorta demonstrates that the cephalic aorta of R. prolixus is an important neurohaemal region.  相似文献   

19.
20.
Here we investigated H2O2 production and detoxification in the hematophagous hemiptera, Rhodnius prolixus. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide radical (O2-). This reaction produces hydrogen peroxide, which is scavenged by antioxidant enzymes such as catalase (CAT). SOD and CAT activities were found in all tissues studied, being highest in the midgut. CAT was dose-dependently inhibited in vivo by injections of 3-amino-1,2,4-triazole (AT). Insects treated with AT showed a twofold increase in H2O2 levels. Injection of DL-buthionine-[S, R]-sulfoximine (BSO), an inhibitor of glutathione synthesis, also resulted in a fourfold increase in H2O2, together with stimulation of CAT activity. Simultaneous administration of both AT and BSO had a synergistic effect on midgut H2O2 content. Taken all together, our results suggest that CAT and glutathione-dependent mechanisms cooperate to control H2O2 concentration in the midgut cell and prevent hydroxyl radical generation by Fenton reaction in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号