首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid sequence of purified gene 0.3 protein of T7, the protein responsible for overcoming host restriction, has been determined. The nucleotide sequence of the 0.3 RNA, the messenger RNA that codes for both the 0.3 protein and the gene 0.4 protein, a T7 protein of unknown function, has also been determined. The 0.3 RNA is 578 nucleotides long, 509 of which are used to code for the 2 proteins. The coding sequences do not overlap, but the termination codon for the 0.3 protein and the presumed initiation codon for the 0.4 protein do overlap in the sequence UAAUG. The 0.3 protein is very acidic: 34 of its 116 amino acids are aspartic or glutamic acid and only 6 are arginine or lysine. The 0.3 protein contains no cysteine. The nucleotide sequence predicts that the 0.4 protein consists of 50 amino acids and contains no histidine or proline. The effects of different mutations indicate that a protein which contains only the first 87 amino acids of the 0.3 protein is unable to prevent host restriction in vivo; one that contains te first 93 amino acids has weak function; and one that has the first 94 amino acids (plus 2 that are not in the wild type sequence) is fully able to prevent host restriction. The apparently critical 94th amino acid is tryptophan. The mutant 0.3 proteins that contain 87 or more amino acids appear to be reasonably stable in vivo, but those that contain 78 or fewer are apparently too unstable to have been observed by gel electrophoresis.  相似文献   

2.
N-terminal as well as internal amino acid sequence data were obtained from the GH dependent, insulin-like growth factor (IGF) binding protein, BP-53, purified from human plasma. Based on these sequence data, full-length cDNA clones of BP-53 have been isolated, and the complete deduced sequence of BP-53 determined. This sequence contains a 27 amino acid putative signal sequence followed by a mature protein of 264 amino acids containing 18 cysteine residues clustered near the N- and C-terminus. The deduced protein sequence of BP-53 has 33% amino acid identity including conservation of all 18 cysteine residues with the recently cloned BP-28, a smaller human IGF-binding protein identified in amniotic fluid and also secreted by the cell line HEP G2. Expression of the cloned BP-53 cDNA in mammalian tissue culture cells results in secretion of the protein into the culture medium. This expressed protein is identical to plasma-derived BP-53 in its immunoreactivity, high affinity binding of IGF-I and IGF-II, and mobility on sodium dodecyl sulfate gel electrophoresis.  相似文献   

3.
Cartilage proteoglycan monomers associate with hyaluronic acid to form proteoglycan aggregates. Link protein, a glycoprotein interacting with both hyaluronic acid and proteoglycan, serves to stabilize the aggregate structure. The primary structure of the link protein has been determined with a view to defining its interaction with both hyaluronic acid and proteoglycan. Thus, the link protein has been digested with staphylococcal V8 protease, trypsin, and chymotrypsin and the resulting peptides characterized by amino acid composition and sequence. We have determined that the link protein is a single peptide with 339 amino acid residues. The protein core has a molecular weight of 38,564. There is one N-linked oligosaccharide at residue 41 with a molecular weight of approximately 2,500. There are five disulfide bonds which define three loops within the amino acid sequence. The loop nearest to the NH2-terminal contains 78 amino acids and is followed by a section of 42 amino acids between it and the second loop. The second and third loops display considerable homology with each other; they consist of 71 and 70 amino acids, respectively, each contain two disulfide bonds, and both loops possess, approximately centrally, an epitope for the species nonspecific anti-link protein monoclonal antibody, 8A4. These loops are separated by a short section of 27 amino acids. We speculate that these loops are functionally important in the interaction of link protein with hyaluronic acid, as they appear to be the most conserved regions of link protein between species.  相似文献   

4.
We recently determined that respiratory syncytial virus (strain A2) encodes a fourth unique envelope-associated virion protein that has molecular weight of approximately 24,000, as estimated by gel electrophoresis. The nucleotide sequence of the mRNA encoding this novel protein has now been determined from five cDNA clones, including three that contain the complete mRNA sequence. The complete mRNA sequence is 957 nucleotides, exclusive of polyadenylate, and contains two partially overlapping open reading frames. The 5'-proximal open reading frame is favored for utilization by the criteria of the location and sequence of its translational start site. Furthermore, the calculated molecular weight of the encoded protein, 22,153, is in agreement with the previous estimate of 24,000 for the authentic protein identified by hybrid selection and in vitro translation. The sequence of the predicted protein, now designated the 22K protein, contains 194 amino acids, is relatively hydrophilic, and appears to be the most basic of the respiratory syncytial virus proteins. The mRNA also contains a second, internal open reading frame which would encode a protein of 90 amino acids. However, no evidence for this translation product is known. The first nine nucleotides in the mRNA sequence, 5'-GGGGCAAAU, are identical to the conserved sequence identified previously at the 5' termini of seven other respiratory syncytial viral mRNAs; the sequence at the 3' end of the 22K mRNA, 5'. . . AGUUAUUU-polyadenylate, contains the elements of the previously identified 3'-terminal consensus sequence for respiratory syncytial virus mRNAs, AGUUAA(N)1-4-polyadenylate (P. L. Collins, Y. T. Huang, and G. W. Wertz, Proc. Natl. Acad. Sci. U.S.A. 81:7683-7687). In addition, we present and describe the intergenic sequence of a dicistronic RNA derived from readthrough of the F and 22K protein genes.  相似文献   

5.
Forty cDNA clones corresponding to the bifunctional NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase enzyme were isolated from a mouse lambda gt11 library. Two classes of cDNA clones were shown by Northern analysis to correspond to the two mRNA species of 1.7 and 2.0 kilobases present in transformed cells but not in normal tissues and that apparently are derived from alternate polyadenylation signals. The 1050-base pair coding region encodes a protein of 350 amino acids which contains a putative mitochondrial-targeting signal peptide of 34 amino acids following the initiator methionine. The 20 amino acids immediately following the signal peptide correspond exactly to those determined by sequence analysis of the amino terminus of the purified protein. The derived amino acid sequence of the NAD-dependent dehydrogenase-cyclohydrolase shows extensive homology with the corresponding amino-terminal sequence of the trifunctional NADP-dependent dehydrogenase-cyclohydrolase-synthetase enzyme from human cells (approximately 40%), yeast cytosol (approximately 36%), and yeast mitochondria (approximately 45%).  相似文献   

6.
C L Cooper  S G Boyce  D R Lueking 《Biochemistry》1987,26(10):2740-2746
Acyl carrier protein (ACP) has been purified from the facultative phototrophic bacterium Rhodobacter sphaeroides. The ACP preparation was greater than 95% homogeneous as determined by native and disodium dodecyl sulfate (Na2DodSO4)-polyacrylamide gel electrophoreses and N-terminal amino acid analysis. Amino acid compositional analysis revealed that the protein contains approximately 75 amino acids, has a calculated minimum molecular weight of 8700, and lacks the amino acids tyrosine and tryptophan. The presence of the characteristic 4'-phosphopantetheine prosthetic group was indicated by the occurrence of equimolar quantities of beta-alanine and taurine in amino acid hydrolysates and was confirmed by independent chemical analysis. The protein displayed a pI of 3.8 and had a calculated partial specific volume of 0.732 mL/g. The primary structure of the protein has been determined for the first 46 amino acid residues from the N terminus of the molecule, and the region of the molecule encompassing the amino acids from residues 31 to 44 was found to have 100% homology with the identical residues in Escherichia coli ACP. In contrast to E. coli ACP, R. sphaeroides ACP migrated according to its molecular weight during Na2DodSO4 gel electrophoresis, was resistant to pH-induced denaturation, and comigrated with the cis-vaccenoyl-ACP derivative during native gel electrophoresis. It is proposed that the basis for these properties is the enhanced hydrophobic character of the protein.  相似文献   

7.
A widely distributed protein methyltransferase catalyzes the transfer of a methyl group from S-adenosyl-methionine to the free carboxyl groups of D-aspartyl and/or L-isoaspartyl derivatives of L-aspartyl and L-asparaginyl residues. This enzyme has been postulated to function in the repair or the catabolism of age-damaged proteins. We present here the complete amino acid sequence of the more basic isozyme I of this enzyme from human erythrocytes. The sequence was determined by Edman degradation and mass spectral analysis of overlapping trypsin, Staphylococcus aureus V8 protease, Pseudomonas fragi endoproteinase Asp-N, cyanogen bromide, and hydroxylamine-generated fragments. The NH2-terminus is modified by acetylation and the protein contains 226 amino acids for a calculated molecular weight of 24,575. This value is in good agreement with the molecular weight determined for the purified protein by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate and by gel filtration chromatography under nondenaturing conditions. The identification of 2 different amino acid residues at both positions 22 and 119 may indicate the presence of allelic variants or of two or more closely related structural genes. Finally, comparison of this sequence with those of methyltransferases for RNA, DNA, and small molecules, as well as other S-adenosylmethionine-utilizing enzymes, shows that many of these proteins share elements of three regions of sequence similarity and may be structurally or evolutionarily related.  相似文献   

8.
9.
We have isolated a cDNA clone from Arabidopsis, At-ERabp1, for the Arabidopsis auxin binding protein located in the lumen of the endoplasmic reticulum (ER). This cDNA clone codes for a protein related to the major auxin binding protein from maize, Zm-ERabp1. A single open reading frame, 594 bases in length, predicts a protein of 198 amino acid residues and a molecular mass of 22,044 D. The primary amino acid sequence contains an N-terminal hydrophobic signal sequence of 33 amino acids. We demonstrated by in vitro studies that the At-ERabp1 protein is translocated into ER-derived microsomes. The protein was processed, and the cleavage site for the N-terminal signal peptide was determined by radiosequencing. The mature protein is composed of 165 amino acid residues, with a molecular mass of 18,641 D. The At-ERabp1 protein contains potential N-glycosylation sites (Asn46-Ile-Ser and Asn130-Ser-Thr). In vitro transport studies demonstrated cotranslational glycosylation. Retention within the lumen of the ER correlates with an additional signal located at the C terminus and represented by the amino acids Lys196-Asp-Glu-Leu, well known to be essential for active retrieval of proteins into the lumen of the ER. DNA gel blot analysis of genomic DNA revealed single hybridizing bands, suggesting that only a single At-ERabp1 gene is present in the Arabidopsis genome. Restriction fragment length polymorphism mapping indeed revealed a single locus mapping to chromosome 4.  相似文献   

10.
11.
The entire amino acid sequence of the alpha subunit (Mr 64,000) of the eighth component of complement (C8) was determined by characterizing cDNA clones isolated from a human liver cDNA library. Two clones with overlapping inserts of net length 2.44 kilobases (kb) were isolated and found to contain the entire alpha coding region [1659 base pairs (bp)]. The 5' end consists of an untranslated region and a leader sequence of 30 amino acids. This sequence contains an apparent initiation Met, signal peptide, and propeptide which ends with an arginine-rich sequence that is characteristic of proteolytic processing sites found in the pro form of protein precursors. The 3' untranslated region contains two polyadenylation signals and a poly(A) sequence. RNA blot analysis of total cellular RNA from the human hepatoma cell line HepG2 revealed a message size of approximately 2.5 kb. Features of the 5' and 3' sequences and the message size suggest that a separate mRNA codes for alpha and argues against the occurrence of a single-chain precursor form of the disulfide-linked alpha-gamma subunit found in mature C8. Analysis of the derived amino acid sequence revealed several membrane surface seeking domains and a possible transmembrane domain. These occur in a cysteine-free region of the subunit and may constitute the structural basis for alpha interaction with target membranes. Analysis of the carbohydrate composition indicates 1 or 2 asparagine-linked but no O-linked oligosaccharide chains, a result consistent with predictions from the amino acid sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
S Nair  C Guerra  P Satir 《FASEB journal》1999,13(10):1249-1257
We have cloned and sequenced a SEC7-related gene in Paramecium tetraurelia that contains an open reading frame for 1135 amino acids encoding a 133 kDa protein, PSec7. Sec7, first identified in vesicular trafficking mutants in yeast, and its phylogenetic homologues function as guanine-nucleotide exchange factors for small G-proteins such as ARF (ADP-ribosylation factor). The deduced amino acid sequence in PSec7 for the motifs that form the ARF binding site are more than 70% identical to yeast Sec7 and similarly identical to ARNO, the human ARF exchange factor, with correct positioning of the critical glutamic acid residue within the motif region. Overall, the identity of PSec7 to yeast Sec7 is 32%. The deduced amino acid sequence also has five sequences that resemble IQ motifs, EF hand binding domains found in all myosins, and two pleckstrin homology domains. Similar sequences are present in yeast Sec7 and other Sec7-related molecules. A protein kinase A phosphorylation site may also be present. Southern blots suggest that a single gene encodes PSec7. Northern blots show that the message encoding PSec7 is induced on deciliation, followed by ciliogenesis, which suggests a role for PSec7 in cilia such as transport or targeting of ciliary membrane components.  相似文献   

13.
14.
Human epidermal growth factor-like immunoreactive factor (designated as EGF-LI) synthesized and secreted by human breast cancer cells, strain MCF-7, was isolated in pure form. Thirty-seven micrograms of EGF-LI was purified by anion-exchange, gel permeation, and reverse-phase high-performance liquid chromatography from 2 liters of serum-free medium conditioned by the cells. The sequence of the first 36 amino acids from the N-terminus was determined with a gas-phase protein sequencer. Computer-assisted screening revealed, quite unexpectedly, this sequence to be completely identical to that of the translational product encoded by pS2, the human estrogen-responsive gene, over the region extending from residue 25 to 60 (Jakowlew, S. B. et al. (1984) Nucleic Acids Res., 12, 2861-2878).  相似文献   

15.
We have determined the complete amino acid sequence of Mirabilis antiviral protein (MAP). MAP is composed of 250 amino acids having a combined molecular weight of 27,833 and contains 23 lysine residues and 7 arginine residues. The amino acid sequence of MAP has 24% homology with the Ricin D-A chain. To carry out systematic structure-function studies of MAP, we have accomplished the total synthesis of its gene. We designed a synthetic MAP gene containing 12 unique restriction sites that were on the average 65 base pairs apart. Thirty synthetic oligonucleotides were enzymatically joined to form DNA duplexes. These were strategically synthesized to have EcoRI and HindIII cohesive ends and were cloned in pUC19. Nine blocks of the synthetic fragments were assembled in pUC19 to form the MAP gene consisting of 759 base pairs. The correctness of the connecting reactions was confirmed by step-wise sequencing of each assembled fragment as well as the total gene. When expressed under control of the tac promoter in Escherichia coli, the synthetic gene gave a protein similar to the native MAP. This was confirmed by an enzyme-linked immunosorbent assay and Western blotting analysis.  相似文献   

16.
Two species of folate binding protein (FBP), an integral membrane-associated form and a soluble secreted form, have been previously purified from cultured human KB cells. The complete nucleotide sequence of the complementary DNA (cDNA) clone for the coding region of the mature membrane-associated FBP has now been determined, and the deduced amino acid sequence has been computer-analyzed for a prediction of the secondary structure of the protein. The clone has 857 nucleotides of which 678 comprise the coding region for 226 amino acids. The deduced amino sequence contains the identical sequence of the published 18 NH2-terminal amino acids of the purified FBP from KB cells and the published partial amino acid sequence of the human milk FBP except for 1 residue. There was also over 90% homology with the published amino acid sequence of the bovine milk FBP. A total of 16 cysteine residues has been conserved in the three proteins indicating that this amino acid may provide a tertiary structure which is required for its ligand binding function. Northern blot analysis using the cDNA probe identified a single band of 1.28-kilobase pair mRNA in KB cells which was 4.7-fold more intense in folate-depleted cells than in normal cells. These results indicate that the membrane FBP and the soluble FBP in the medium are translation products of the same gene. Computer analysis of the deduced amino acid sequence indicates that there is only one stretch of amino acids of sufficient hydrophobicity and length to span the lipid bilayer of the plasma membrane, but it lacked a predictable helical structure. Those regions of the sequence which did have a predictable helical structure lacked sufficient hydrophobicity required for a membrane anchor. Thus, it is likely that the fatty acids previously reported to be present in the membrane-associated FBP from these cells rather than a peptide sequence provide an important membrane anchoring function.  相似文献   

17.
18.
An expressed gene sequence which was identified by the isolation of a methylation free CpG island from human chromosome 7 has been cloned from a human lung cDNA library. The deduced protein sequence contains 360 amino acids and has several features of a secreted protein; it is cysteine rich with a signal peptide sequence and two potential asn-linked glycosylation sites. The protein sequence shows marked similarity with human and murine int-1 and their Drosophila homolog wingless (Dint-1). This human int-1 related protein, int-1 and Dint-1 have diverse patterns of expression, but the inferred structural similarities suggest that some of the functional characteristics of these proteins may be shared.  相似文献   

19.
C Carr  D McCourt  J B Cohen 《Biochemistry》1987,26(22):7090-7102
The primary structure of the 43-kilodalton peripheral membrane protein (43-kDa protein) of Torpedo nicotinic postsynaptic membrane has been determined. The 43-kDa protein, which was isolated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, has an amino terminus resistant to Edman degradation, while the sequence at the carboxyl terminus is Tyr-Val. An amino acid sequence of 405 residues was obtained by NH2-terminal sequence analysis of complementary peptides generated by digestion with trypsin, chymotrypsin, Staphylococcus aureus V8 protease, and endoproteinase Lys-C, as well as by chemical cleavage at methionine. This sequence of molecular mass 45,618 daltons lacks the amino terminus but extends to the carboxyl terminus of the 43-kDa protein. Unusual structural features of the 43-kDa protein include two regions of approximately 80 residues, each containing 10% cysteine, as well as stretches predicted to exist as amphipathic alpha-helices. Other than the group blocking the amino terminus, no evidence was found for posttranslational modification of amino acids. The 43-kDa protein may represent a novel protein family because a computer search of this sequence with the National Biomedical Research Foundation data base (Release 12.0) did not reveal any significant homology to known protein sequences.  相似文献   

20.
The interaction of the nucleocapsid protein NCp7, from the pNL4-3 isolate of HIV-1, with psi-RNA-SL3, with the sequence 5'-GGACUAGCGGAGGCUAGUCC, was studied using non-denaturing gel electrophoresis. Two kinds of experiments were performed, using buffered solutions of radiolabeled RNA and unlabeled protein. In the 'dilution' experiments, the total RNA concentration, RT, was varied for a series of solutions, but kept equal to the total protein concentration, PT, In the 'titration' experiments, solutions having RT constant but with varying PT were analyzed. The solutions were electrophoresed and the autoradiographic spot intensities, proportional to the amounts of the different species present, were measured. The intensities were fit to a number of equilibrium models, differing in species stoichiometries, by finding the best values of the binding constants. It was shown that NCp7 protein and SL3 RNA combine to form at least two complexes. When PT is below approximately 10 microM, a complex that contains two RNAs and one protein forms. Increasing PT to approximately 100 microM causes the 2:1 complex to oligomerize, forming a species having eight RNAs and four proteins. For the dilution experiments, run at 5 degrees C at an ionic strength of 31 mM, we found K1 for the 2:1 complex is approximately 10(11) M(-2) and K2 for the 8:4 complex is approximately 10(16) M(-3). The titration experiments returned K1 approximately 10(7) M(-2) (poorly determined) and K2 approximately 10(19) M(-3). The analysis was complicated by the loss of RNA at higher protein concentrations, due to formation of an insoluble species containing both RNA and protein, which does not enter the gel. Correcting for this changes the calculated values of equilibrium constants, but not the molecularities determined by our analysis. The observation that a small complex can oligomerize to form a larger species is consistent with the fact that NCp7 organizes and condenses the genome in the virus particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号