首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA labeled with [methyl-3H]methionine and/or [32P]orthophosphate was isolated from the polyribosomes of herpes simplex virus (HSV) types 1-infected cells and separated into polyadenylylated [poly(A+)]and non-polyadenylylated [poly(A-)] fractions. Virus-specific RNA was obtained by hybridization in liquid to either excess HSV DNA or filters containing immobilized HSV DNA. Analysis in denaturing sucrose gradients indicated that HSV-specific poly(A+) RNA sedimented in a broad peak, with a modal S value of 20. The ratio of [3H]methyl to 32P decreased with increasing size of RNA, suggesting that each RNA chain contains a similar sumber of methyl groups. Further analysis indicated an average of one RNase-resistant structure of the type m7G(5')pppNmpNp or m7G(5')pppNmpNmpNp per 2,780 nucleotides. The following components were identified in the 5'-terminal oligonucleotides of polyribosome-associated HSV-specific poly(A+) and poly(A-) RNA: 7-methylguanosine, N6,2'-O-dimethyladenosine, and the 2'-O-methyl derivatives of guanosine, adenosine, uridine, and denosine, and the 2'-O-methyl derivatives of guanosine, adenosine, uridine, and cytidine. The most common 5'-terminal sequences were m7G(5')pppm6Am and m7G(5')pppGm. An additional modified nucleoside, N6-methyladenosine, was present in an internal position of HSV-specific RNA.  相似文献   

2.
The major 5'-termini of human adenovirus type 2 early gene block 4 mRNA were sequenced. Poly(A+) polyribosomal RNA was isolated from Ad2 early infected cells, the 5'-terminal m7GPPP removed and the 5'-OH of the penultimate 2'-0-methylated nucleotide labeled with [gamma-32P]ATP using polynucleotide kinase. Ad2 E4 mRNA was purified by hybridization to the Ad2 EcoRI-C fragment and was digested with RNase T1. The resulting oligonucleotides were resolved by two dimensional paper electrophoresis-homochromatography. Four major and 3-4 minor 5'-terminal sequences were identified and characterized. The sequence of the 5'-terminal structures of the major four termini are: (1) m7GpppUmU(m)UUACACUGp, (2) m7GpppUmU(m)UACACUGp, (3) m7GpppUmU(m)ACACUGp, and (4) m7Gppp(m6)AmC(m)ACUGp. These major 5'-terminal sequences were aligned with nucleotide 325, 326, 327, and 329 from the righthand end of the known Ad2 DNA sequence (1) in the region mapped as the 5'-terminus of E4 mRNA by electron microscopy (2,3) and S1 nuclease-gel (4) mapping. Two potential ribosomal binding sites and an initiator codon were found at 40 to 65 nucleotides and about 80 nucleotides, respectively, from these heterogenous 5'-termini. Ad2 E4 major mRNA species appear to be unique since mRNA molecules initiate at a pyrimidine, perhaps by RNA polymerase stuttering, or they are products of an unusual type of RNA processing.  相似文献   

3.
Treatment of the RNA of satellite tobacco necrosis virus (STNV) with phosphomonoesterase followed by heat denaturation and treatment with polynucleotide kinase in the presence of [gamma-32P]ATP yields a STNV [5'-32P]RNA containing a homogeneous 5' terminus. Analyses of this STNV [5'-32P]RNA yield the sequence of the first 42 nucleotides from the 5'terminus of STNV RNA. This nucleotide sequence contains the translation initiation AUG codon starting at position 30 from the 5' terminus as indicated by match of subsequent nucleotides with the genetic code assignments for the N-terminal amino acids of STNV coat protein in the 5'-terminal sequence ppAGUAAAGACAGGAAACUU-UACUGACUAACAUGGCAAAACAAC. An interesting feature of this sequence is its potential to form a hairpin loop structure involving perfect Watson-Crick base pairing between the first seven nucleotides and nucleotides at positions 16--22.  相似文献   

4.
5.
Both 3'- and 5'-terminal structures of human rotavirus genome double-stranded RNA segments were determined. RNAs were labeled at the 3'-termini with [32P]pCp by incubation with RNA ligase and at the 5'-termini with [32P]phosphate by polynucleotide kinase or, in the case of 5' caps, with 3H by chemical modification with [3H]NaBH4. Examination of radiolabeled termini released by digestion with several base-specific RNases revealed that rotavirus RNA segments are base paired end-to-end and contain the same terminal structures: (formula; see text)  相似文献   

6.
The 5'-terminal sequence of hen ovalbumin mRNA was investigated using a novel labeling method. Ovalbumin mRNA was purified by hybridization to complementary DNA coupled to cellulose. The mRNA thus purified was shown to be 97.9% pure by hybridization with plasmid DNA containing sequences to the messengers coding for conalbumin and ovomucoid, the next two most abundant messengers of oviduct. After digestion with RNase T1 and alkaline phosphatase, 5'-terminal capped oligonucleotides were selected by binding to anti-m7G-Sepharose. These were then labeled using RNA ligase and [5'-32P]pCp, separated by two-dimensional gel electrophoresis, and sequenced by partial digestion with base-specific ribonucleases. A nested set of three capped oligonucleotides was identified. Their structures and relative abundances were m7GpppAUACAG, 3% m7GpppACAUACAG, 61+; and m7GpppGUACAUACAG, 36%.  相似文献   

7.
8.
The adenine nucleotide stores of cultured adrenal medullary cells were radiolabeled by incubating the cells with 32Pi and [3H]adenosine and the turnover, subcellular distribution, and secretion of the nucleotides were examined. ATP represented 84-88% of the labeled adenine nucleotides, ADP 11-13%, and AMP 1-3%. The turnover of 32P-adenine nucleotides and 3H-nucleotides was biphasic and virtually identical; there was an initial fast phase with a t1/2 of 3.5-4.5 h and a slow phase with a half-life varying from 7 to 17 days, depending upon the particular cell preparation. The t1/2 of the slow phase for labeled adenine nucleotides was the same as that for the turnover of labeled catecholamines. The subcellular distribution of labeled adenine nucleotides provides evidence that there are at least two pools of adenine nucleotides which make up the component with the long half-life. One pool, which contains the bulk of endogenous nucleotides (75% of the total), is present within the chromaffin vesicles; the subcellular localization of the second pool has not been identified. The studies also show that [3H]ATP and [32P]ATP are distributed differently within the cell; 3 days after labeling 75% of the [32P]ATP was present in chromaffin vesicles while only 35% of the [3H]ATP was present in chromaffin vesicles. Evidence for two pools of ATP with long half-lives and for the differential distribution of [32P]ATP and [3H]ATP was also obtained from secretion studies. Stimulation of cell cultures with nicotine or scorpion venom 24 h after labeling with [3H]adenosine and 32Pi released relatively twice as much catecholamine as 32P-labeled compounds and relatively three times as much catecholamine as 3H-labeled compounds.  相似文献   

9.
10.
Nascent short DNA chains could result from repair of incorporated uracil residues or be intermediates in discontinuous replication. We have characterized short DNA chains having apyrimidinic/apurinic-sites at 5' ends, the expected intermediates of repair, to distinguish them from RNA-linked replication intermediates. We have synthesized model substrates for the repair products; d(pRib[32P]poly(T)) and d(Rib[32P]poly(T)). Alkaline hydrolysis of both substrates has produced [5'-32P]poly(dT). Nascent short DNA was prepared from an Escherichia coli sof (dut) mutant, in this strain fragments from excision repair of uracil residues accumulate. The products of alkaline treatment are hardly digested by spleen exonuclease which selectively degrades 5'-hydroxyl-terminated DNA. These two results show that alkaline hydrolysis of the uracil repair fragments produces 5'-phosphoryl-terminated DNA, whereas it is known that 5'-hydroxyl-terminated DNA is generated from RNA-linked DNA molecules. The two types of nascent fragments thus can be distinguished by the 5'-terminal structure produced by an alkaline hydrolysis.  相似文献   

11.
The population of short DNA molecules (less than 10(3) nucleotides) in 3T3 cells has been studied using in vivo and in vitro pulse labeling techniques and in vitro end-labeling. There is a large number of molecules of less than 100 nucleotides present in equal numbers in both Go and S phase cells. In S phase cells, most of these molecules are not replicating intermediates because they do not become density-labeled after a moderate period of substitution of BrdUMP, although they are detected by end-labeling in vitro. This population includes the nascent Okazaki pieces that can be labeled in a short pulse with [3H]dThd or [3H]dTTP, however, these represent less than 10% of the total population. Alkaline hydrolysis of the molecules that had been end-labeled with 32P using [gamma32P]ATP and polynucleotide kinase did not reveal significant release of [32P] 2'(3'), 5' ribonucleoside diphosphates.  相似文献   

12.
Human peripheral blood lymphocytes were stimulated with phytohemagglutinin and the excreted DNA was isolated from the medium after four days of incubation of cells. The excreted DNA was labeled at the 5'-end with [gamma-32P]ATP and polynucleotide kinase. Analysis of the end-labeled material revealed a size distribution with a chain length of 6 - 60 nucleotides. These short DNA fragments did not contain ribo-nucleotides at their 5'-termini. P1 nuclease digestion did not release specific deoxyribonucleoside monophosphates from the 5'-end of the excreted DNA fragments. These results point to the non-specific degradation of DNA excreted by stimulated lymphocytes.  相似文献   

13.
A fast method for isolation of a 3'-terminal fragment of Streptomyces aureofaciens 16S RNA was developed. The procedure involves reaction of 70S ribosomes with cloacin DF13 and subsequent fractionation of the reaction mixture by polyacrylamide gel electrophoresis. The cloacin fragment was eluted from the gel and used directly for 3'-end labeling with cytidine-3',5'-[5'-32P]bisphosphate. The labeled RNA fragment was sequenced by the enzymatic method. It consists of 50 nucleotides and has the sequence 5'-GUCGUAACAAGGUAACCGUACCGGA-AGGUGCGGUUGGAUCACCUCCUUUCOH. The differences from the E. coli and Bacillus sequences and their possible influence on the rate and specificity of polypeptide synthesis are discussed.  相似文献   

14.
Sequence analysis of 5'-[32P] labeled tRNA and eukaryotic mRNA using an adaptation of a method recently described by Donis-Keller, Maxam and Gilbert for mapping guanines, adenines and pyrimidines from the 5'-end of an RNA is described. In addition, a technique utilizing two-dimensional polyacrylamide gel electrophoresis for identification of pyrimidines within a sequence is described. 5'-[32P] Labeled rabbit beta-globin mRNA and N. crassa mitochondrial initiator tRNA were partially digested with T1- RNase for cleavage at G residues, with U2-RNase for cleavage at A residues, with an extracellular RNase from B. cereus for cleavage at pyrimidine residues and with T2-RNase or with alkali for cleavage at all four residues. The 5'-[32P] labeled partial digestion products were separated according to their size, by electrophoresis in adjacent lanes of a polyacrylamide slab gel and the location of G's, A's and of pyrimidines extending 60-80 nucleotides from the 5'-end of the RNA determined. Two-dimensional polyacrylamide gel electrophoresis was used to separate the 5'-[32P] labeled fragments present in partial alkali digests of a 5'-[32P] labeled mRNA. The mobility shifts corresponding to the difference of a C residue were distinct from those corresponding to a U residue and this formed the basis of a method for distinguishing between the pyrimidines.  相似文献   

15.
Circular (e.g. simian virus 40) and linear (e.g. λ phage) DNAs have been labeled to high specific radioactivities (>108 cts/min per μg) in vitro using deoxynucleoside [α-32P]triphosphates (100 to 250 Ci/mmol) as substrates and the nick translation activity of Escherichia coli DNA polymerase I. The reaction product yields single-stranded fragments about 400 nucleotides long following denaturation. Because restriction fragments derived from different regions of the nick-translated DNA have nearly the same specific radioactivity (cts/min per 10[su3] bases), we infer that nicks are introduced, and nick translation is initiated, with equal probability within all internal regions of the DNA. Such labeled DNAs (and restriction endonuclease fragments derived from them) are useful probes for detecting rare homologous sequences by in situ hybridization and reassociation kinetic analysis.  相似文献   

16.
RNA-linked DNA fragments of T7-infected Escherichiacoli were labeled with [(32)P]orthophosphate invivo. The RNA segments of the labeled fragments were isolated by degrading the DNA portion with the 3'--> 5' exonuclease intrinsic to bacteriophage T4 DNA polymerase and fractionated according to net charge by a DEAE-Sephadex A-25 column chromatography in the presence of 7 M urea. Tri-, tetra- and pentanucleotides were obtained which have ATP residues at their 5' ends. Most of the pentanucleotides had a single deoxynucleotide at the 3' end but a minor portion was totally an oligoribonucleotide. In the light of prior results, the former is a cooligomer of an intact tetraribonucleotide primer and a monodeoxynucleotide and the latter is an intact pentaribonucleotide primer. Tri- and tetraribonucleotides with ATP at the 5' ends had no deoxynucleotide at the 3' ends, therefore it is not clear if intact triribonucleotide primers are present. The 5'-terminal dinucleotides of the tetra- and pentanucleotides were mostly pppApC and a trace amount of pppApA was present.Images  相似文献   

17.
In discontinuous polyoma DNA replication, the synthesis of Okazaki fragments is primed by RNA. During viral DNA synthesis in nuclei isolated from infected cells, 40% of the nascent short DNA fragments had the polarity of the leading strand which, in theory, could have been synthesized by a continuous mechanism. To rule out that the leading strand fragments were generated by degradation of nascent DNA, they were further characterized. DNA fragments from a segment of the genome which replication forks pass in only one direction were strand separated. The sizes of the fragments from both strands were similar, suggesting that one strand was not specifically degraded. Most important, however, the majority of the Okazaki fragments of both strands were linked to RNA at their 5' ends. For identification, the RNA was labeled at the 5' ends by [beta-32P]GTP, internally by [3H]CTP, [3H]GTP, and [3H]UTP, or at the 3' ends by 32P transfer from adjacent [32P]dTMP residues. All three kinds of labeling indicated that an equal proportion of DNA fragments from the two strands was linked to RNA primers.  相似文献   

18.
Abstract: DNA ligase activities were measured in neuron-rich and glial nuclear preparations and liver nuclei isolated from adult guinea pigs. The enzymatic properties of cerebral and liver nuclear DNA ligases were studied with isolated nuclei and nuclear extracts. ATP (Km= 46–48 μM) and bivalent cation (Mg2+ or Mn2+) were required for the maximal activities in cerebral and liver nuclei. β-Mercaptoethanol did not affect the activities, but N-ethylmaleimide and p-chloromercuribenzoate completely inhibited the activities. Deoxyadenosine-5′-triphosphate partially inhibited the activities in both cerebral and liver nuclei. An interdependent effect of Na+ and Mg2+ on the enzyme activities was observed. A high concentration (200 mM) of Na+ activated both enzymes and shifted to the acid side the optimal pH for both enzymes. DNA ligase was more easily extracted with lower concentrations of NaCl from liver nuclei than from cerebral nuclei, but the extraction curves from both nuclear species reached a plateau level (92% of total activities of nuclear enzymes) at 200 mM-NaCl. Apparent Km for the substrate [32P]phosphoryl DNA was determined according to a modification of the Michaelis-Menten equation, which was applied for the case where an unknown amount of substrate nicks in chromatin DNA coexisted with the nicks in exogenous substrate DNA. Neuronal and glial nuclear enzymes had similar Km values (about 20 μg of [32P]phosphoryl DNA/ml), but the liver nuclear enzyme had a higher Km value (54 μg of [32P]phosphoryl DNA/ml). The modified Michaelis-Menten equation provided the amounts of nicks available as substrate in chromatin DNA of isolated nuclei. Neuronal and glial nuclei contained 1.5 and 0.29 pmol of nicks/μg of nuclear DNA, respectively, in contrast to an intermediate amount of nicks in liver nuclei (0.63 pmol/μg of nuclear DNA). DNA ligase activity in neuronal nuclei [312 units (fmol of 5′-phosphomonoester converted into a phosphatase-resistant form per min at 37°C) per μg of nuclear DNA] was 11-fold higher than that in glial nuclei [28.7 units/μg of nuclear DNA]. Liver nuclei contained an intermediate activity [54.7 units/μg of nuclear DNA].  相似文献   

19.
C D Rao  A Kiuchi    P Roy 《Journal of virology》1983,46(2):378-383
The 3'-terminal sequences of the 10 double-stranded RNA genome segments of bluetongue virus (serotypes 10 and 11) were determined. The double-stranded RNAs were 3' labeled with [5'-32P]pCp and resolved into 10 segments by electrophoresis. After denaturation, the two complementary strands of segments 4 through 10 were resolved into fast- and slow-migrating species by polyacrylamide gel electrophoresis, and their 3' end sequences were determined. Complete RNase T1 digestion of the individual 3'-labeled double-stranded RNA segments yielded two labeled oligonucleotides, one of which migrated faster than the other on 20% polyacrylamide-7 M urea gels. Sequence analyses of the two oligonucleotides of segments 4 through 10 confirmed the corresponding RNA sequence data. For RNA segments 1 through 3 the oligonucleotide analyses gave comparable results. The 3'-terminal sequences of the fast-migrating RNA species were HOCAAUUU. . . ; those of the slow-migrating RNA species were HOCAUUCACA. . . . Similar results were obtained for double-stranded RNA from bluetongue virus serotypes 10 and 11. Beyond the common termini, the sequences for each segment varied considerably.  相似文献   

20.
The metabolic pool of adenine nucleotides in platelets can be labeled by incubating platelets for 1 h in vitro with [14C]adenosine or [32P]orthophosphate. When these platelets are treated with thrombin, the adenine nucleotides released are not labeled. Because of this, Holmsen's suggestion of a metabolically inert pool of granule nucleotides has been generally accepted. We have found that upon incubation of labeled rabbit platelets for longer times (up to 6 h) in vitro, or upon reinjection and reharvesting at times up to 66 h, the releasable pool of adenine nucleotides becomes labeled. Because the rates of 32p and 14C incorporation into this releasable pool are similar, it seems likely that these labels enter the granules as ATP. Equilibrium between the metabolic and granule pools is complete by 18 h. When rabbit platelets are labeled in vivo by intravenous injection of [32P]orthophosphate, peak labeling occurs between 60 and 70 h; this corresponds to their maturation time. The platelets probably incorporate 32P during their production in the megakaryocytes. The specific radioactivity of the adenine nucleotides in the releasable (granule) pool of these platelets is the same as the specific radioactivity in the nonreleasable (metabolic) pool. Since inorganic phosphate in platelets (and undoubtedly in the megakaryocytes) exchanges with inorganic phosphate in plasma, and since the radioactivity of the latter decreases rapidly, the adenine nucleotides in the two pools must exchange to maintain the same specific radioactivity. Transfer of adenine nucleotides into storage granules may represent a general phenomenon because it has been observed in the chromaffin cells of the adrenal medulla also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号