首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monophyly of the litostomes was tested using nine newly sequenced and four previously unpublished small subunit ribosomal RNA (SSrRNA) gene sequences from free-living Haptoria as well as from endosymbiotic Trichostomatia: the vestibuliferids Balantidium coli and Isotricha prostoma, the cyclotrichiid Mesodinium pulex, and the haptorids Loxophyllum rostratum, Dileptus sp., Enchelyodon sp., Enchelys polynucleata, Epispathidium papilliferum (isolates A and B), Spathidium stammeri, Arcuospathidium muscorum, Arcuospathidium cultriforme, and the unusual Teuthophrys trisulca. Phylogenetic analyses depicted the litostomes as a monophyletic group consisting of the trichostomes (subclass Trichostomatia) and the free-living haptorians (subclass Haptoria). The cyclotrichiids Mesodinium and Myrionecta (order Cyclotrichiida) branched either basally within or outside the Litostomatea. In most analyses, the haptorians did not receive support as a monophyletic group. Instead, Dileptus branched basally to all litostome taxa, and Epispathidium papilliferum grouped with the Subclass Trichostomatia. Some subgroupings, however, of haptorian genera corresponded to suggested superfamilial taxa (e.g., orders Spathidiida and Pleurostomatida). Within the monophyletic trichostomes, we can distinguish three clades: (1) an Australian clade; (2) the order Entodiniomorphida; and (3) the order Vestibuliferida. However, Balantidium, currently classified in the Vestibuliferida, did not group with the other vestibuliferids, suggesting that this order may be paraphyletic.  相似文献   

2.
Ciliates of the subclass Trichostomatia inhabit the fermentative regions of the digestive tract of herbivores. Most available small subunit ribosomal RNA (SSrRNA) gene sequences of trichostomes are from species isolated from the rumen of cattle or sheep and from marsupials. No ciliate species endosymbiotic in horses has yet been analyzed. We have sequenced the SSrRNA genes of five ciliate species, isolated from the cecum and colon of four Yakut horses: Cycloposthium edentatum, Cycloposthium ishikawai, Tripalmaria dogieli, Cochliatoxum periachtum, and Paraisotricha colpoidea.

Based on their morphology, Cycloposthium, Tripalmaria, and Cochliatoxum are classified as Entodiniomorphida, while Paraisotricha is considered a member of the Vestibuliferida. Phylogenetic analyses using Bayesian inference, distance, and parsimony methods confirm these placements. The two Cycloposthium species cluster together with the published Cycloposthium species isolated from a wallaby in Australia. Tripalmaria and Cochliatoxum branch as a sister group to or basal within the Entodiniomorphida. The Vestibuliferida remain paraphyletic with Paraisotricha and Balantidium branching basal to all other trichostome species, but not closely related to Isotricha and Dasytricha.  相似文献   


3.
The largest suborder of bark lice (Insecta: Psocodea: ‘Psocoptera’) is Psocomorpha, which includes over 3600 described species. We estimated the phylogeny of this major group with family‐level taxon sampling using multiple gene markers, including both nuclear and mitochondrial ribosomal RNA and protein‐coding genes. Monophyly of the suborder was strongly supported, and monophyly of three of four previously recognized infraorders (Caeciliusetae, Epipsocetae, and Psocetae) was also strongly supported. In contrast, monophyly of the infraorder Homilopsocidea was not supported. Based on the phylogeny, we divided Homilopsocidea into three independent infraorders: Archipsocetae, Philotarsetae, and Homilopsocidea. Except for a few cases, previously recognized families were recovered as monophyletic. To establish a classification more congruent with the phylogeny, we synonymized the families Bryopsocidae (with Zelandopsocinae of Pseudocaeciliidae), Calopsocidae (with Pseudocaeciliidae), and Neurostigmatidae (with Epipsocidae). Monophyly of Elipsocidae, Lachesillidae, and Mesopsocidae was not supported, but the monophyly of these families could not be rejected statistically, so they are tentatively maintained as valid families. The molecular tree was compared with a morphological phylogeny estimated previously. Sources of congruence and incongruence exist and the utility of the morphological data for phylogenetic estimation is evaluated. © 2014 The Linnean Society of London  相似文献   

4.
The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of species ranging from aerobic, free-living predators to anaerobic endocommensals. This is traditionally reflected by classifying the Litostomatea into the subclasses Haptoria and Trichostomatia. The morphological classifications of the Haptoria conflict with the molecular phylogenies, which indicate polyphyly and numerous homoplasies. Thus, we analyzed the genealogy of 53 in-group species with morphological and molecular methods, including 12 new sequences from free-living taxa. The phylogenetic analyses and some strong morphological traits show: (i) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea and (ii) three distinct lineages (subclasses): the Rhynchostomatia comprising Tracheliida and Dileptida; the Haptoria comprising Lacrymariida, Haptorida, Didiniida, Pleurostomatida and Spathidiida; and the Trichostomatia. The curious Homalozoon cannot be assigned to any of the haptorian orders, but is basal to a clade containing the Didiniida and Pleurostomatida. The internal relationships of the Spathidiida remain obscure because many of them and some "traditional" haptorids form separate branches within the basal polytomy of the order, indicating one or several radiations and convergent evolution. Due to the high divergence in the 18S rRNA gene, the chaeneids and cyclotrichiids are classified incertae sedis.  相似文献   

5.
The first cladistic analysis of phylogeny in the class Scaphopoda (Steiner 1992a,1996) examined relationships among family and selected sub-family taxa using morphological data. A preferred/ consensus tree of relationships illustrated monophyly of the orders Dentaliida and Gadilida, partial resolution among dentaliid families, and complete resolution among gadilid taxa. However, several alternative replications of the analysis, including use of a revised data matrix, did not produce the reported tree number or level of resolution; in all cases, monophyly of the Dentaliida was not supported by strict consensus of resultant parsimonious trees. Reanalysis, using unordered characters and outgroup rooting, only clearly resolves monophyly of the Gadilida and the sister relationship of the Entalinidae with the remaining gadilid families. These analyses emphasize the need for more comparative data and thorough parsimony analysis in scaphopod cladistic phylogenetics, as relationships in this class are still some way from resolution.  相似文献   

6.
Dileptid and tracheliid ciliates have been traditionally classified within the subclass Haptoria of the class Litostomatea. However, their phylogenetic position among haptorians has been controversial and indicated that they may play a key role in understanding litostomatean evolution. In order to reconstruct the evolutionary history of dileptids and tracheliids, and to unravel their affinity to other haptorians, we have used a cladistic approach based on morphological evidence and a phylogenetic approach based on 18S rRNA gene sequences, including eight new ones. The molecular trees demonstrate that dileptids and tracheliids represent a separate subclass, Rhynchostomatia, that is sister to the subclasses Haptoria and Trichostomatia. The Rhynchostomatia are characterized by a ventrally located oral opening at the base of a proboscis that carries a complex oral ciliature. We have recognized two orders within Rhynchostomatia. The new order Tracheliida is monotypic, while the order Dileptida comprises two families: the new, typically bimacronucleate family Dimacrocaryonidae and the multimacronucleate family Dileptidae. The Haptoria evolved from the last common ancestor of the Litostomatea by polarization of the body, the oral opening locating more or less apically and the oral ciliature simplifying. The Trichostomatia originated from a microaerophylic haptorian by further simplification of the oral ciliature, possibly due to an endosymbiotic lifestyle.  相似文献   

7.
The ciliate subclass Haptoria is a diverse taxon that includes most of the free-living predators in the class Litostomatea. Phylogenetic study of this group was initially conducted using a single molecular marker small-subunit ribosomal RNA (SSU rRNA genes). Multi-gene analysis has been limited because very few other sequences were available. We performed phylogenetic analyses of Haptoria incorporating new SSU rRNA gene sequences from several debated members of the taxon, in particular, the first molecular data from Cyclotrichium. We also provided nine large-subunit ribosomal RNA (LSU rRNA) gene sequences and 10 alpha-tubulin sequences from diverse haptorians, and two possible relatives of controversial haptorians (Plagiopylea, Prostomatea). Phylogenies inferred from the different molecules showed the following: (i) Cyclotrichium and Paraspathidium were clearly separated from the haptorids and even from class Litostomatea, rejecting their high-level taxonomic assignments based on morphology. Both genera branch instead with the classes Plagiopylea, Prostomatea and Oligohymenophora. This raises the possibility that the well-known but phylogenetically problematic cyclotrichiids Mesodinium and Myrionecta may also have affinities here, rather than with litostomes; (ii) the transfer of Trachelotractus to Litostomatea is supported, especially by the analyses of SSU rRNA and LSU rRNA genes, however, Trachelotractus and Chaenea (more uncertainly) generally form the two deepest lineages within litostomes; and (iii) phylogenies of the new molecular markers are consistent with SSU rRNA gene information in recovering order Pleurostomatida as monophyletic. However, Pleurostomatida branches cladistically within order Haptorida, as does subclass Trichostomatia (on the basis of SSU rRNA phylogenies). Our results suggest that the class-level taxonomy of ciliates is still not resolved, and also that a systematic revision of litostomes is required, beginning at high taxonomic levels (taxa currently ranked as subclasses and orders).  相似文献   

8.
Phylogeny of caddisflies (Insecta, Trichoptera)   总被引:2,自引:0,他引:2  
Trichoptera are holometabolous insects with aquatic larvae that, together with the Lepidoptera, comprise the Amphiesmenoptera. Previous phylogenetic hypotheses and progress on our ongoing data collection are summarized. Fragments of the large and small subunit nuclear ribosomal RNAs (D1, D3, V4–5), the nuclear elongation factor 1 alpha gene and a fragment of mitochondrial cytochrome oxidase 1 (COI) were sequenced, and molecular data were combined with previously published morphological data. Equally and differentially weighted parsimony analyses were conducted in order to present a phylogeny of Trichoptera, including 43 of 45 families. Our phylogeny closely resembles that proposed by Herbert Ross with respect to the relationships among suborders, with a monophyletic Annulipalpia at the base of the tree, and a clade consisting of Spicipalpia plus a monophyletic Integripalpia. The monophyly of Spicipalpia is weakly supported in the combined equally weighted analysis, and Spicipalpia is paraphyletic in the differentially weighted analysis. Within Integripalpia, our phylogeny recovered monophyletic Plenitentoria, Brevitentoria and Sericostomatoidea. Leptoceroidea was unresolved in the equally weighted analysis and monophyletic in the differentially weighted analysis. Within Annulipalpia, we recovered a basal but paraphyletic Philopotamoidea and a monophyletic Hydropsychoidea.  相似文献   

9.
Evolutionary relationships of taxa within the ciliate subclass Haptoria are poorly understood. In this study, we broaden the taxon sampling by adding 14 small subunit ribosomal RNA gene sequences, 13 large subunit ribosomal RNA gene sequences and 13 ITS1‐5.8S‐ITS2 gene sequences of haptorians. This includes the first molecular data from two genera, Pseudotrachelocerca Song, 1990, and Foissnerides Song & Wilbert, 1989. Phylogenies inferred from the three individual genes and concatenated data sets show that: (i) the subclass Haptoria could be a multiphyletic complex with about up to four main clades while “interrupted” by some intermingled with the related subclasses Rhynchostomatia, Trichostomatia and some incertae sedis; (ii) the genus Pseudotrachelocerca Song, 1990, is clearly separated from Litostomatea and clusters within an assemblage comprising the classes Prostomatea, Colpodea and Plagiopylea; (iii) both morphological evidence and molecular evidence indicate that the genus Foissnerides should be transferred from family Trachelophyllidae to Pseudoholophryidae; (iv) the validity of the order Helicoprorodontida Grain, 1994, and its monophyly is strongly supported; (5) the family Chaeneidae does not belong to the order Lacrymarida but represents a distinct clade in the subclass Haptoria.  相似文献   

10.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

11.
The first comprehensive phylogenetic analyses of the most diverse subfamily of plant bugs, Mirinae, is presented in this study, for 110 representative taxa based on total evidence analysis. A total of 85 morphological characters and 3898 bp of mitochondrial (16S, COI) and nuclear (18S, 28S) sequences were analysed for each partitioned and combined dataset based on parsimony, maximum likelihood and Bayesian inference. Major results obtained in this study include monophyly of the tribe Mecistoscelini. The largest tribe, Mirini, was recovered as polyphyletic, and Stenodemini was recovered as paraphyletic. The clade of Stenodemini + Mecistoscelini is the sister group of the remaining Mirinae. The monophyly of two complexes composed of superficially similar genera were tested; the Lygus complex was recovered as nonmonophyletic, and the Adelphocoris–Creontiades–Megacoelum complex was confirmed to be monophyletic. The generic relationships of the main clades within each tribe based on the phylogeny, as well as their supported morphological characters, are discussed.  相似文献   

12.
Smith ND 《PloS one》2010,5(10):e13354

Background

Debate regarding the monophyly and relationships of the avian order Pelecaniformes represents a classic example of discord between morphological and molecular estimates of phylogeny. This lack of consensus hampers interpretation of the group''s fossil record, which has major implications for understanding patterns of character evolution (e.g., the evolution of wing-propelled diving) and temporal diversification (e.g., the origins of modern families). Relationships of the Pelecaniformes were inferred through parsimony analyses of an osteological dataset encompassing 59 taxa and 464 characters. The relationships of the Plotopteridae, an extinct family of wing-propelled divers, and several other fossil pelecaniforms (Limnofregata, Prophaethon, Lithoptila, ?Borvocarbo stoeffelensis) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification.

Methodology/Principal Findings

Pelecaniform monophyly is not recovered, with Phaethontidae recovered as distantly related to all other pelecaniforms, which are supported as a monophyletic Steganopodes. Some anatomical partitions of the dataset possess different phylogenetic signals, and partitioned analyses reveal that these discrepancies are localized outside of Steganopodes, and primarily due to a few labile taxa. The Plotopteridae are recovered as the sister taxon to Phalacrocoracoidea, and the relationships of other fossil pelecaniforms representing key calibration points are well supported, including Limnofregata (sister taxon to Fregatidae), Prophaethon and Lithoptila (successive sister taxa to Phaethontidae), and ?Borvocarbo stoeffelensis (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed.

Conclusions/Significance

Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though notable conflicts remain. The phylogenetic position of the Plotopteridae implies that wing-propelled diving evolved independently in plotopterids and penguins, representing a remarkable case of convergent evolution. Despite robust support for the placement of fossil taxa representing key calibration points, the successive outgroup relationships of several “stem fossil + crown family” clades are variable and poorly supported across recent studies of avian phylogeny. Thus, the impact these fossils have on inferred patterns of temporal diversification depends heavily on the resolution of deep nodes in avian phylogeny.  相似文献   

13.
Complete coding regions of the 18S rRNA gene of an enteropneust hemichordate and an echinoid and ophiuroid echinoderm were obtained and aligned with 18S rRNA gene sequences of all major chordate clades and four outgroups. Gene sequences were analyzed to test morphological character phylogenies and to assess the strength of the signal. Maximum- parsimony analysis of the sequences fails to support a monophyletic Chordata; the urochordates form the sister taxon to the hemichordates, and together this clade plus the echinoderms forms the sister taxon to the cephalochordates plus craniates. Decay, bootstrap, and tree-length distribution analyses suggest that the signal for inference of dueterostome phylogeny is weak in this molecule. Parsimony analysis of morphological plus molecular characters supports both monophyly of echinoderms plus enteropneust hemichordates and a sister group relationship of this clade to chordates. Evolutionary parsimony does not support chordate monophyly. Neighbor-joining, Fitch-Margoliash, and maximum-likelihood analyses support a chordate lineage that is the sister group to an echinoderm-plus-hemichordate lineage. The results illustrate both the limitations of the 18S rRNA molecule alone for high- level phylogeny inference and the importance of considering both molecular and morphological data in phylogeny reconstruction.   相似文献   

14.
Conoesucidae (Trichoptera, Insecta) are restricted to SE Australia, Tasmania and New Zealand. The family includes 42 described species in 12 genera, and each genus is endemic to either New Zealand or Australia. Although monophyly has been previously assumed, no morphological characters have been proposed to represent synapomorphies for the group. We collected molecular data from two mitochondrial genes (16S and cytochrome oxidase I), one nuclear gene (elongation factor 1-α) (2237–2277 bp in total), and 12 morphological characters to produce the first phylogeny of the family. We combined the molecular and morphological characters and performed both a maximum parsimony analysis and a Bayesian analysis to test the monophyly of the family, and to hypothesize the phylogeny among its genera. The parsimony analysis revealed a single most parsimonious tree with Conoesucidae being a monophyletic taxon and sistergroup to the Calocidae. The Bayesian inference produced a distribution of trees, the consensus of which is supported with posterior probabilities of 100% for 15 out of 22 possible ingroup clades including the most basal branch of the family, indicating strong support for a monophyletic Conoesucidae. The most parsimonious tree and the tree from the Bayesian analysis were identical except that the ingroup genus Pycnocentria changed position by jumping to a neighbouring clade. Based on the assumption that the ancestral conoesucid species was present on both New Zealand and Australia, a biogeographical analysis using the dispersal-vicariance criteria demonstrated that one or two (depending on which of the two phylogenetic reconstructions were applied) sympatric speciation events took place on New Zealand prior to a single, late dispersal from New Zealand to Australia.  相似文献   

15.
马尾松Ls-rDNA 5'末端序列分析及其系统学意义   总被引:2,自引:0,他引:2  
马尾松Ls-rDNA 5‘末端302个核苷酸序列已被确定,与4种裸子植物和4种被子植物及一种绿藻的同源序列进行比较分析,其所构建的Ls-rDNA系统树图表明,传统分类中的裸子植物与被子植物明显成为单系类群,支持裸子植物的两个单系谱支,即苏铁目—银杏目,买麻藤目—松柏类。Ls-rDNA 5’末端部分序列分析在种子植物高等级分类群系统进化研究中具有重要作用。  相似文献   

16.
17.
Recent phylogenetic analyses of cetacean relationships based on DNA sequence data have challenged the traditional view that baleen whales (Mysticeti) and toothed whales (Odontoceti) are each monophyletic, arguing instead that baleen whales are the sister group of the odontocete family Physeteridae (sperm whales). We reexamined this issue in light of a morphological data set composed of 207 characters and molecular data sets of published 12S, 16S, and cytochrome b mitochondrial DNA sequences. We reach four primary conclusions: (1) Our morphological data set strongly supports the traditional view of odontocete monophyly; (2) the unrooted molecular and morphological trees are very similar, and most of the conflict results from alternative rooting positions; (3) the rooting position of the molecular tree is sensitive to choice of artiodactyls outgroup taxa and the treatment of two small but ambiguously aligned regions of the 12S and 16S sequences, whereas the morphological root is strongly supported; and (4) combined analyses of the morphological and molecular data provide a well-supported phylogenetic estimate consistent with that based on the morphological data alone (and the traditional view of toothed-whale monophyly) but with increased bootstrap support at nearly every node of the tree.  相似文献   

18.
Johnson, R. F. (2010). Breaking family ties: taxon sampling and molecular phylogeny of chromodorid nudibranchs (Mollusca, Gastropoda). —Zoologica Scripta, 40, 137–157. Although researchers have debated the monophyly of the diverse chromodorid nudibranchs (Chromodorididae) for over 100 years, the monophyly of this family has not been properly tested. Recent morphological and molecular phylogenetic studies have added to the debate, but have not used appropriate methods to resolve this issue. I investigate how outgroup choice and taxon sampling influences tree topology and in turn the recovery of chromodorid monophyly. As a demonstration of these potential methodological problems, I then present phylogenies resulting from different taxon‐sampling schemes using the same molecular data. Taxon sampling has a strong influence on the resulting phylogenies. With comprehensive taxon sampling and outgroup selection, Cadlina is not a member of the Chromodorididae. The chromodorid nudibranchs without Cadlina are monophyletic and possibly sister to the Actinocyclidae. Additionally, I found, for the first time, support for most current family groupings in the Doridoidea. I propose a new classification in which Cadlina is not considered a member of the Chromodorididae. Instead, I resurrect the family name Cadlinidae to include the genera Cadlina and Aldisa.  相似文献   

19.
Pentatomomorpha is the second suborder in size only to Cimicomorpha in Heteroptera. However, the phylogenetic relationships among members of the suborder are not well established. Sequences from partial nuclear ribosomal 18S gene and mitochondrial COX1 gene were analyzed separately and in combination to generate a preliminary molecular phylogeny of Pentatomomorpha based on 40 species representing 17 putative families. Analyses of the combined sequence data provided a better-resolved and more robust hypothesis of Pentatomomorpha phylogeny than did separate analyses of the individual genes. The phylogenies were mostly congruent with morphological studies. Results strongly supported the monophyly of the infraorder Pentatomomorpha, and the placement of Aradoidea as sister to Trichophora. The monophyletic Trichophora was grouped into two major lineages, one being the superfamily Pentatomoidea, and the other comprising Lygaeoidea, Coreoidea, and Pyrrhocoroidea. The analysis of the ML and ME trees of combined dataset supported the monophyletic Pentatomoidea. In all analysis the Pyrrhocoroidea was polyphyletic; the monophyletic Lygaeoidea was supported only in the analysis of ME tree, and Coreoidea was polyphyletic except in the MP tree of combined dataset. The molecular and morphylogical data both indicated that the family Coreoidae should be revised subsequently. Our phylogenetic results suggested that the COX1 segment alone might not be an optimal molecular marker for the phylogeny of Pentatomomorpha.  相似文献   

20.
The chestnut-shouldered fairy-wrens comprise a subgroup of four species in the genus Malurus (Passeriformes: Maluridae). Collectively, they are widespread across the Australian continent but phenotypic variation is strongly structured geographically in just one species, M. lamberti. Earlier phylogenetic analyses of this group have been limited to one or two individuals for each species and have not represented all currently recognised subspecies of M. lamberti. Historically, the taxonomy and nomenclature of the M. lamberti complex has been debated, in part because of morphological similarities among its subspecies and another member of the group, M. amabilis. We reconstructed the phylogeny of all four species of chestnut-shouldered fairy-wrens including all four subspecies of M. lamberti using a mitochondrial gene (ND2), five anonymous nuclear loci and three nuclear introns. Phylogenetic analysis of the mitochondrial ND2 gene nests M. amabilis within M. lamberti rendering the latter paraphyletic. Individual nuclear gene trees failed to reliably resolve each of the species boundaries or the phylogenetic relationships found in the mtDNA tree. When combined, however, a strongly supported overall topology was resolved supporting the monophyly of M. lamberti and its sister species relationship to M. amabilis. Current subspecific taxonomy of M. lamberti was not concordant with all evolutionary lineages of M. lamberti, nominotypical M. l. lamberti being the only subspecies recovered as a monophyletic group from mtDNA. Some genetic structuring is evident and potential barriers to gene flow are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号