首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nematode mitochondria possess extremely truncated tRNAs. Of 22 tRNAs, 20 lack the entire T-arm. The T-arm is necessary for the binding of canonical tRNAs and EF (elongation factor)-Tu (thermo-unstable). The nematode mitochondrial translation system employs two different EF-Tu factors named EF-Tu1 and EF-Tu2. Our previous study showed that nematode Caenorhabditis elegans EF-Tu1 binds specifically to T-armless tRNA. C. elegans EF-Tu1 has a 57-amino acid C-terminal extension that is absent from canonical EF-Tu, and the T-arm-binding residues of canonical EF-Tu are not conserved. In this study, the recognition mechanism of T-armless tRNA by EF-Tu1 was investigated. Both modification interference assays and primer extension analysis of cross-linked ternary complexes revealed that EF-Tu1 interacts not only with the tRNA acceptor stem but also with the D-arm. This is the first example of an EF-Tu recognizing the D-arm of a tRNA. The binding activity of EF-Tu1 was impaired by deletion of only 14 residues from the C-terminus, indicating that the C-terminus of EF-Tu1 is required for its binding to T-armless tRNA. These results suggest that C. elegans EF-Tu1 recognizes the D-arm instead of the T-arm by a mechanism involving its C-terminal region. This study sheds light on the co-evolution of RNA and RNA-binding proteins in nematode mitochondria.  相似文献   

2.
The mitochondrial tRNA genes are hot spots for mutations that lead to human disease. A single point mutation (T4409C) in the gene for human mitochondrial tRNA(Met) (hmtRNA(Met)) has been found to cause mitochondrial myopathy. This mutation results in the replacement of U8 in hmtRNA(Met) with a C8. The hmtRNA(Met) serves both in translational initiation and elongation in human mitochondria making this tRNA of particular interest in mitochondrial protein synthesis. Here we show that the single 8U-->C mutation leads to a failure of the tRNA to respond conformationally to Mg(2+). This mutation results in a drastic disruption of the structure of the hmtRNA(Met), which significantly reduces its aminoacylation. The small fraction of hmtRNA(Met) that can be aminoacylated is not formylated by the mitochondrial Met-tRNA transformylase preventing its function in initiation, and it is unable to form a stable ternary complex with elongation factor EF-Tu preventing any participation in chain elongation. We have used structural probing and molecular reconstitution experiments to examine the structures formed by the normal and mutated tRNAs. In the presence of Mg(2+), the normal tRNA displays the structural features expected of a tRNA. However, even in the presence of Mg(2+), the mutated tRNA does not form the cloverleaf structure typical of tRNAs. Thus, we believe that this mutation has disrupted a critical Mg(2+)-binding site on the tRNA required for formation of the biologically active structure. This work establishes a foundation for understanding the physiological consequences of the numerous mitochondrial tRNA mutations that result in disease in humans.  相似文献   

3.
The translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNAs to ribosomes by recognizing the tRNA acceptor and T stems. However, the unusual truncation observed in some animal mitochondrial tRNAs seems to prevent recognition by a canonical EF-Tu. For instance, nematode mitochondria contain tRNAs lacking a T or D arm. We recently found an atypical EF-Tu (EF-Tu1) specific for nematode mitochondrial tRNAs that lack the T arm. We have now discovered a second factor, EF-Tu2, which binds only to tRNAs that lack a D arm. EF-Tu2 seems unique in its amino acid specificity because it recognizes the aminoacyl moiety of seryl-tRNAs and the tRNA structure itself. Such EF-Tu evolution might explain tRNA structural divergence in animal mitochondria.  相似文献   

4.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA).  相似文献   

5.
It has recently been shown that the non-formylated initiator Met-tRNAfMet from E. coli can form a stable ternary complex with the elongation factor EF-Tu and GTP. Using the protection of EF-Tu:GTP against spontaneous hydrolysis of the aminoacylester bond of Met-tRNAfMet, we confirm these results, and show that the protection is specific for the non-formylated form of the initiator tRNA. The ternary complex Met-tRNAfMet:EF-Tu:GTP can be isolated by column chromatography in a way similar to that demonstrated previously with EF-Tu complexed to the elongator Met-tRNAmMet. 32P-labeled Met-tRNAfMet within the ternary complex was analyzed by the footprinting technique. The pattern of initiator tRNA protection by EF-Tu against ribonuclease digestion is not significantly different from the one found previously for elongator tRNAs. These results lead us to suggest that the initiator tRNAfMet, under growth conditions which do not permit formylation, may to some extent function as an elongator tRNA.  相似文献   

6.
Modified Tyr-tRNATyr and Phe-tRNAPhe species from yeast having the aminoacyl residue bound specifically to the 2' and 3' position of the terminal adenosine, respectively, were investigated for their ability to form ternary complexes with Escherichia coli elongation factor Tu and GTP. Both Tyr-tRNATyr-CpCpA (2'd) and Tyr-tRNATyr-CpCpA(3' d) derivatives which are esterified with the amino acid on the 3' and 2' position respectively and which lack the vicinal hydroxyl were able to form ternary complexes. The stability of these ternary complexes was lower than in the case of native Tyr-tRNATyr-CpCpA. Tyr-tRNATyr-CpCpA(3' d) having the amino acid attached to the 2' position interacted considerably more strongly with EF-Tu - GTP than Tyr-tRNATyr-CpCpA(2' d). Ternary complex formation was observed with neither Phe-tRNAPhe-CpCpA(2'NH2) nor Phe-tRNAPhe-CpCpA(3'NH2). It is concluded that 2' as well as 3' isomers of native aminoacyl-tRNA can be utilized for ternary complex formation but in a following step a uniform 2'-aminoacyl-tRNA - EF-Tu - GTP complex is formed. Although the free vicinal hydroxyl group of the terminal adenosine is not absolutely required, replacement of the ester linkage through with the amino acid is attached to tRNA by an amide linkage leads to loss of ability to interact with elongation factor Tu.  相似文献   

7.
J C Liu  M Liu    J Horowitz 《RNA (New York, N.Y.)》1998,4(6):639-646
Escherichia coli tRNA(Val) with pyrimidine substitutions for the universally conserved 3'-terminal adenine can be readily aminoacylated. It cannot, however, transfer valine into polypeptides. Conversely, despite being a poor substrate for valyl-tRNA synthetase, tRNA(Val) with a 3'-terminal guanine is active in in vitro polypeptide synthesis. To better understand the function of the 3'-CCA sequence of tRNA in protein synthesis, the effects of systematically varying all three bases on formation of the Val-tRNA(Val):EF-Tu:GTP ternary complex were investigated. Substitutions at C74 and C75 have no significant effect, but replacing A76 with pyrimidines decreases the affinity of valyl-tRNA(Val) for EF-Tu:GTP, thus explaining the inability of these tRNA(Val) variants to function in polypeptide synthesis. Valyl-tRNA(Val) terminating in 3'-guanine is readily recognized by EF-TU:GTP. Dissociation constants of the EF-Tu:GTP ternary complexes with valine tRNAs having nucleotide substitutions at the 3' end increase in the order adenine < guanine < uracil; EF-Tu has very little affinity for tRNA terminating in 3' cytosine. Similar observations were made in studies of the interaction of 3' end mutants of E. coli tRNA(Ala) and tRNA(Phe) with EF-Tu:GTP. These results indicate that EF-Tu:GTP preferentially recognizes purines and discriminates against pyrimidines, especially cytosine, at the 3' end of aminoacyl-tRNAs.  相似文献   

8.
Intact, native EF-Tu, isolated using previously described methods and fully active in binding GTP, was never found to be fully active in binding aminoacyl-tRNA as judged by high performance liquid chromatography (HPLC) gel filtration and zone-interference gel-electrophoresis. In the presence of kirromycin, however, all these EF-Tu.GTP molecules bind aminoacyl-tRNA, although with a drastically reduced affinity. For the first time, the purification of milligram quantities of ternary complexes of EF-Tu.GTP and aminoacyl-tRNA, free of deacylated tRNA and inactive EF-Tu, has become possible using HPLC gel filtration. We also describe an alternative new method for the isolation of the ternary complexes by means of fractional extraction in the presence of polyethylene glycol. In the latter procedure, the solubility characteristics of the ternary complexes are highly reminiscent to those of free tRNA. Concentrated samples of EF-Tu.GMPPNP.aminoacyl-tRNA complexes show a high stability.  相似文献   

9.
The interaction between Escherichia coli aminoacyl-tRNAs and elongation factor Tu (EF-Tu) x GTP was examined. Ternary complex formation with Phe-tRNAPhe and Lys-tRNALys was compared to that with the respective misaminoacylated Tyr-tRNAPhe and Phe-tRNALys. There was no pronounced difference in the efficiency of aminoacyl-tRNA x EF-Tu x GTP complex formation between Phe-tRNAPhe and Tyr-tRNAPhe. However, Phe-tRNALys was bound preferentially to EF-Tu x GTP as compared to Lys-tRNALys. This was shown by the ability of EF-Tu x GTP to prevent the hydrolysis of the aminoacyl ester linkage of the aminoacyl-tRNA species. Furthermore, gel filtration of ternary complexes revealed that the complex formed with the misaminoacylated tRNALys was also more stable than the one formed with the correctly aminoacylated tRNALys. Both misaminoacylated aminoacyl-tRNA species could participate in the ribosomal peptide elongation reaction. Poly(U)-directed synthesis of poly(Tyr) using Tyr-tRNAPhe occurred to a comparable extent as the synthesis of poly(Phe) with Phe-tRNAPhe. In the translation of poly(A) using native Lys-tRNALys, poly(Lys) reached a lower level than poly(Phe) when Phe-tRNALys was used. It was concluded that the side-chain of the amino acid linked to a tRNA affects the efficiency of the aminoacyl-tRNA x EF-Tu x GTP ternary complex formation.  相似文献   

10.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determinant in eukaryotic initiator tRNAs is located in the TPsiC stem, whereas a secondary negative determinant is the A1:U72 base pair at the end of the acceptor stem. Here we show that E. coli initiator tRNA also has a secondary negative determinant for elongation and that it is the U50.G64 wobble base pair, located at the same position in the TPsiC stem as the primary negative determinant in eukaryotic initiator tRNAs. Mutation of the U50.G64 wobble base pair to C50:G64 or U50:A64 base pairs increases the in vivo amber suppressor activity of initiator tRNA mutants that have changes in the acceptor stem and in the anticodon sequence necessary for amber suppressor activity. Binding assays of the mutant aminoacyl-tRNAs carrying the C50 and A64 changes to the elongation factor EF-Tu.GTP show marginally higher affinity of the C50 and A64 mutant tRNAs and increased stability of the EF-Tu.GTP. aminoacyl-tRNA ternary complexes. Other results show a large effect of the amino acid attached to a tRNA, glutamine versus methionine, on the binding affinity toward EF-Tu.GTP and on the stability of the EF-Tu.GTP.aminoacyl-tRNA ternary complex.  相似文献   

11.
Escherichia coli elongation factor (EF-Tu) and the corresponding mammalian mitochondrial factor, EF-Tumt, show distinct differences in their affinities for guanine nucleotides and in their interactions with elongation factor Ts (EF-Ts) and mitochondrial tRNAs. To investigate the roles of the three domains of EF-Tu in these differences, six chimeric proteins were prepared in which the three domains were systematically switched. E. coli EF-Tu binds GDP much more tightly than EF-Tumt. This difference does not reside in domain I alone but is regulated by interactions with domains II and III. All the chimeric proteins formed ternary complexes with GTP and aminoacyl-tRNA although some had an increased or decreased activity in this assay. The activity of E. coli EF-Tu but not of EF-Tumt is stimulated by E. coli EF-Ts. The presence of any one of the domains of EF-Tumt in the prokaryotic factor reduced its interaction with E. coli EF-Ts 2-3-fold. In contrast, the presence of any of the three domains of E. coli EF-Tu in EF-Tumt allowed the mitochondrial factor to interact with bacterial EF-Ts. This observation indicates that even domain II which is not in contact with EF-Ts plays an important role in the nucleotide exchange reaction. EF-Tsmt interacts with all of the chimeras produced. However, with the exception of domain III exchanges, it inhibits the activities of the chimeras indicating that it could not be productively released to allow formation of the ternary complex. The unique ability of EF-Tumt to promote binding of mitochondrial Phe-tRNAPhe to the A-site of the ribosome resides in domains I and II. These studies indicate that the interactions of EF-Tu with its ligands is a complex process involving cross-talk between all three domains.  相似文献   

12.
The elongation factors of protein biosynthesis are well preserved through out evolution. They catalyze the elongation phase of protein biosynthesis, where on the ribosome amino acids are added one at a time to a growing peptide according to the genetic information transcribed into mRNA. Elongation factor Tu (EF-Tu) provides the binding of aminoacylated tRNA to the ribosome and protects the aminoester bond against hydrolysis until a correct match between the codon on mRNA and the anticodon on tRNA can be achieved. Elongation factor G (EF-G) supports the translocation of tRNAs and of mRNA on the ribosome so that a new codon can be exposed for decoding. Both these factors are GTP binding proteins, and as such exist in an active form with GTP and an inactive form with GDP bound to the nucleotide binding domain. Elongation factor Ts (EF-Ts) will catalyze the exchange of nucleotide on EF-Tu. This review describes structural work on EF-Tu performed in our laboratory over the last eight years. The structural results provide a rather complete picture of the major structural forms of EF-Tu, including the so called ternary complex of aa-tRNA:EF-Tu:GTP. The structural comparison of this ternary complex with the structure of EF-G:GDP displays an unexpected macromolecular mimicry, where three domains of EF-G mimick the shape of the tRNA in the ternary complex. This observation has initiated much speculation on the evolution of all factors involved in protein synthesis, as well as on the details of the ribosomal function in one part of elongation.  相似文献   

13.
Nematode mitochondria expresses two types of extremely truncated tRNAs that are specifically recognized by two distinct elongation factor Tu (EF-Tu) species named EF-Tu1 and EF-Tu2. This is unlike the canonical EF-Tu molecule that participates in the standard protein biosynthesis systems, which basically recognizes all elongator tRNAs. EF-Tu2 specifically recognizes Ser-tRNASer that lacks a D arm but has a short T arm. Our previous study led us to speculate the lack of the D arm may be essential for the tRNA recognition of EF-Tu2. However, here, we showed that the EF-Tu2 can bind to D arm-bearing Ser-tRNAs, in which the D–T arm interaction was weakened by the mutations. The ethylnitrosourea-modification interference assay showed that EF-Tu2 is unique, in that it interacts with the phosphate groups on the T stem on the side that is opposite to where canonical EF-Tu binds. The hydrolysis protection assay using several EF-Tu2 mutants then strongly suggests that seven C-terminal amino acid residues of EF-Tu2 are essential for its aminoacyl-tRNA-binding activity. Our results indicate that the formation of the nematode mitochondrial (mt) EF-Tu2/GTP/aminoacyl-tRNA ternary complex is probably supported by a unique interaction between the C-terminal extension of EF-Tu2 and the tRNA.  相似文献   

14.
We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3- and Cy5-labeled tRNAs. Pretranslocation (PRE) complexes demonstrate fluctuations between classical and hybrid forms, with concerted motions of tRNAs away from L11 and from each other when classical complex converts to hybrid complex. EF-G?GTP binding to both hybrid and classical PRE complexes halts these fluctuations prior to catalyzing translocation to form the posttranslocation (POST) complex. EF-G dependent translocation from the classical PRE complex proceeds via transient formation of a short-lived hybrid intermediate. A-site binding of either EF-G to the PRE complex or of aminoacyl-tRNA?EF-Tu ternary complex to the POST complex markedly suppresses ribosome conformational lability.  相似文献   

15.
The ubiquity of elongation factor Tu (EF-Tu)-dependent conformational changes in amino-acyl-tRNA (aa-tRNA) and the origin of the binding energy associated with aa-tRNA.EF-Tu.GTP ternary complex formation have been examined spectroscopically. Fluorescein was attached covalently to the 4-thiouridine base at position 8 (s4U-8) in each of four elongator tRNAs (Ala, Met-m, Phe, and Val). Although the probes were chemically identical, their emission intensities in the free aa-tRNAs differed by nearly 3-fold, indicating that the dyes were in different environments and hence that the aa-tRNAs had different tertiary structures near s4U-8. Upon association with EF-Tu.GTP, the emission intensities increased by 244%, 57%, or 15% for three aa-tRNAs due to a change in tRNA conformation; the fourth aa-tRNA exhibited no fluorescence change upon binding to EF-Tu.GTP. Despite the great differences in the emission intensities of the free aa-tRNAs and in the magnitudes of their EF-Tu-dependent intensity increases, the emission intensity per aa-tRNA molecule was nearly the same (within 9% of the average) for the four aa-tRNAs when bound to EF-Tu-GTP. Thus, the binding of EF-Tu.GTP induced or selected a tRNA conformation near s4U-8 that was very similar, and possibly the same, for each aa-tRNA species. It therefore appears that EF-Tu functions, at least in part, by minimizing the conformational diversity in aa-tRNAs prior to their beginning the recognition and binding process at the single decoding site on the ribosome. Since an EF-Tu-dependent fluorescence change was also observed with fluorescein-labeled tRNA(Phe), the protein-dependent structural change is effected by direct interactions between EF-Tu and the tRNA and does not require the aminoacyl group. The Kd of the tRNA(Phe).EF-Tu.GTP ternary complex was determined, at equilibrium, to be 2.6 microM by the ability of the unacylated tRNA to compete with fluorescent Phe-tRNA for binding to the protein. Comparison of this Kd with that of the Phe-tRNA ternary complex showed that in this case the aminoacyl moiety contributed 4.3 kcal/mol toward ternary complex formation at 6 degrees C but that the bulk of the binding energy in the ternary complex was derived from direct protein-tRNA interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Transfer ribonucleic acids containing 2-thiocytidine in position 75 ([s2C]tRNAs) were prepared by incorporation of the corresponding cytidine analogue into 3'-shortened tRNA using ATP(CTP):tRNA nucleotidyltransferase. [s2C]tRNA was selectively alkylated with fluorescent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-I-AEDANS) on the 2-thiocytidine residue. The product [AEDANS-s2C]aminoacyl-tRNA, forms a ternary complex with Escherichia coli elongation factor Tu and GTP, leading to up to 130% fluorescence enhancement of the AEDANS chromophore. From fluorescence titration experiments, equilibrium dissociation constants of 0.24 nM, 0.22 nM and 0.60 nM were determined for yeast [AEDANS-s2C]Tyr-tRNATyr, yeast Tyr-tRNATyr, and the homologous E. coli Phe-tRNAPhe, respectively, interacting with E. coli elongation factor Tu.GTP. The measurement of the association and dissociation rates of the interaction of [AEDANS-s2C]Tyr-tRNATyr with EF-Tu.GTP and the temperature dependence of the resulting dissociation constants gave values of 55 J mol-1 K-1 for delta S degrees' and -34.7 kJ mol-1 for delta H degrees' of this reaction.  相似文献   

17.
In canonical translation systems, the single elongation factor Tu (EF-Tu) recognizes all elongator tRNAs. However, in Caenorhabditis elegans mitochondria, two distinct EF-Tu species, EF-Tu1 and EF-Tu2, recognize 20 species of T armless tRNA and two species of D armless tRNA(Ser), respectively. We previously reported that C. elegans mitochondrial EF-Tu2 specifically recognizes the serine moiety of serylated-tRNA. In this study, to identify the critical residues for the serine specificity in EF-Tu2, several residues in the amino acid binding pocket of bacterial EF-Tu were systematically replaced with corresponding EF-Tu2 residues, and the mutants were analyzed for their specificity for esterified amino acids attached to tRNAs. In this way, we obtained a bacterial EF-Tu mutant that acquired serine specificity after the introduction of 10 EF-Tu2 residues into its amino acid binding pocket. C. elegans EF-Tu2 mutants lacking serine specificity were also created by replacing seven or eight residues with bacterial residues. Further stressing the importance of these residues, we found that they are almost conserved in EF-Tu2 sequences of closely related nematodes. Thus, these three approaches reveal the critical residues essential for the unique serine specificity of C. elegans mitochondrial EF-Tu2.  相似文献   

18.
The ribosome translates the genetic information of an mRNA molecule into a sequence of amino acids. The ribosome utilizes tRNAs to connect elements of the RNA and protein worlds during protein synthesis, i.e. an anticodon as a unit of genetic information with the corresponding amino acid as a building unit of proteins. Three tRNA-binding sites are located on the ribosome, termed the A, P and E sites. In recent years the tRNA-binding sites have been localized on the ribosome by three different techniques, small-angle neutron scattering, cryo-electron microscopy and X-ray analyses of 70 S crystals. These high-resolution glimpses into various ribosomal states together with a large body of biochemical data reveal an intricate interplay between the tRNAs and the three ribosomal binding sites, providing an explanation for the remarkable features of the ribosome, such as the ability to select the correct ternary complex aminoacyl-tRNA.EF-Tu.GTP out of more than 40 extremely similar tRNA complexes, the precise movement of the tRNA(2).mRNA complex during translocation and the maintenance of the reading frame.  相似文献   

19.
The ribosome is a complex macromolecular assembly capable of translating mRNA sequence into amino acid sequence. The adaptor molecule of translation is tRNA, but the delivery of aminoacyl-tRNAs--the primary substrate of the ribosome--relies on the formation of a ternary complex with elongation factor Tu (EF-Tu) and GTP. Likewise, elongation factor G (EF-G) is required to reset the elongation cycle through the translocation of tRNAs. Recent structures and biochemical data on ribosomes in complex with the ternary complex or EF-G have shed light on the mode of action of the elongation factors, and how this interplays with the state of tRNAs and the ribosome. A model emerges of the specific routes of conformational changes mediated by tRNA and the ribosome that trigger the GTPase activity of the elongation factors on the ribosome.  相似文献   

20.
EF-Tu delivers aminoacyl-tRNAs to ribosomes in the translation system. However, unusual truncations found in some animal mitochondrial tRNAs seem to prevent recognition by a canonical EF-Tu. We showed previously that the chromadorean nematode has two distinct EF-Tus, one of which (EF-Tu1) binds only to T-armless aminoacyl-tRNAs and the other (EF-Tu2) binds to D-armless Ser-tRNAs. Neither of the EF-Tus can bind to canonical cloverleaf tRNAs. In this study, by analyzing the translation system of enoplean nematode Trichinella species, we address how EF-Tus and tRNAs have evolved from the canonical structures toward those of the chromadorean translation system. Trichinella mitochondria possess three types of tRNAs: cloverleaf tRNAs, which do not exist in chromadorean nematode mitochondria; T-armless tRNAs; and D-armless tRNAs. We found two mitochondrial EF-Tu species, EF-Tu1 and EF-Tu2, in Trichinella britovi. T.britovi EF-Tu2 could bind to only D-armless Ser-tRNA, as Caenorhabditis elegans EF-Tu2 does. In contrast to the case of C.elegans EF-Tu1, however, T.britovi EF-Tu1 bound to all three types of tRNA present in Trichinella mitochondria. These results suggest that Trichinella mitochondrial translation system, and particularly the tRNA-binding specificity of EF-Tu1, could be an intermediate state between the canonical system and the chromadorean nematode mitochondrial system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号