首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA interference in the pathogenic fungus Cryptococcus neoformans   总被引:7,自引:0,他引:7  
Cryptococcus neoformans is a pathogenic fungus responsible for serious disease in immunocompromised individuals. This organism has recently been developed as an experimental system, with initiation of a genome project among other molecular advances. However, investigations of Cryptococcus are hampered by the technical difficulty of specific gene replacements. RNA interference, a process in which the presence of double-stranded RNA homologous to a gene of interest results in specific degradation of the corresponding message, may help solve this problem. We have shown that expression of double-stranded RNA corresponding to portions of the cryptococcal CAP59 and ADE2 genes results in reduced mRNA levels for those genes, with phenotypic consequences similar to that of gene disruption. The two genes could also be subjected to simultaneous interference through expression of chimeric double-stranded RNA. Specific modulation of protein expression through introduction of double-stranded RNA thus operates in C. neoformans, which is the first demonstration of this technique in a fungal organism. Use of RNA interference in Cryptococcus should allow manipulation of mRNA levels for functional analysis of genes of interest and enable efficient exploration of genes discovered by genome sequencing.  相似文献   

3.
4.
Aspergillus fumigatus is the most prevalent airborne filamentous fungal pathogen in humans, causing severe and often fatal invasive infections in immunocompromised patients. Currently available antifungal drugs to treat invasive aspergillosis have limited modes of action, and few are safe and effective. To identify and prioritize antifungal drug targets, we have developed a conditional promoter replacement (CPR) strategy using the nitrogen-regulated A. fumigatus NiiA promoter (pNiiA). The gene essentiality for 35 A. fumigatus genes was directly demonstrated by this pNiiA-CPR strategy from a set of 54 genes representing broad biological functions whose orthologs are confirmed to be essential for growth in Candida albicans and Saccharomyces cerevisiae. Extending this approach, we show that the ERG11 gene family (ERG11A and ERG11B) is essential in A. fumigatus despite neither member being essential individually. In addition, we demonstrate the pNiiA-CPR strategy is suitable for in vivo phenotypic analyses, as a number of conditional mutants, including an ERG11 double mutant (erg11BDelta, pNiiA-ERG11A), failed to establish a terminal infection in an immunocompromised mouse model of systemic aspergillosis. Collectively, the pNiiA-CPR strategy enables a rapid and reliable means to directly identify, phenotypically characterize, and facilitate target-based whole cell assays to screen A. fumigatus essential genes for cognate antifungal inhibitors.  相似文献   

5.
Pathogens of the Aspergillus species are frequently seen in deep-seated mycoses. We previously demonstrated that the culture filtrate of Aspergillus fumigatus (CF) has immunosuppressive effects on polymorphonuclear leukocytes (PMNs), which act as the main phagocytes to hyphae of Aspergillus fumigatus (A. fumigatus). But little is known about the gene expression profiles involved in it. Therefore we investigated the changes in gene expression in human PMNs treated with CF or gliotoxin at two time points, using microarray analysis. CF and gliotoxin changed the expression of 548 and 381 genes, respectively. Only 51 genes showed the same expression patterns with the two stimulants, and CF-induced changes in gene expression occurred comparatively earlier than those induced by gliotoxin. Among 31 genes encoding apoptosis, which were up- or down-regulated in this assay, only 3 genes were similarly changed by both kinds of stimulation. Apoptosis was detected and quantified using two apoptosis assays. CF and gliotoxin changed the expessions of only 3 out of 19 regulated genes related to inflammatory mediators and receptors similarly. The up-regulation of the gene encoding annexin 1 (ANXA1), which is known to be involved in extravasation and apoptosis of neutrophils, may play a role in the immunosuppressive effect of A. fumigatus. The difference in expression changes between CF and gliotoxin is presumed to be caused by the interaction among the components of CF and therefore the interaction is an area of interest for further investigation.  相似文献   

6.
Ha YS  Covert SF  Momany M 《Eukaryotic cell》2006,5(7):1036-1042
The cell wall, a mesh of carbohydrates and proteins, shapes and protects the fungal cell. The enzyme responsible for the synthesis of one of the main components of the fungal wall, 1,3-beta-glucan synthase, is targeted by the antifungal caspofungin acetate (CFA). Clinical isolates of Candida albicans and Aspergillus fumigatus are much more sensitive to CFA than clinical isolates of Fusarium species. To better understand CFA resistance in Fusarium species, we cloned and sequenced FsFKS1, which encodes the Fusarium solani f. sp. pisi beta(1,3)-D-glucan synthase, used RNA interference to reduce its expression and complemented deletion of the essential fks gene of the CFA-sensitive fungus A. fumigatus with FsFKS1. Reduction of the FsFKS1 message in F. solani f. sp. pisi reduced spore viability and caused lysis of spores and hyphae, consistent with cell wall defects. Compensating for the loss of A. fumigatus fks1 with FsFKS1 caused only a modest increase in the tolerance of A. fumigatus for CFA. Our results suggest that FsFKS1 is required for the proper construction of F. solani cell walls and that the resistance of F. solani to CFA is at best only partially due to resistance of the FsFKS1 enzyme to this antifungal agent.  相似文献   

7.
8.
9.
The nematode C. elegans has become an important model for understanding how genes influence behavior. However, in this organism the available approaches for identifying the neuron(s) where the function of a gene is required for a given behavioral trait are time consuming and restricted to non essential genes for which mutants are available. We describe a simple reverse genetics approach for reducing, in chosen C. elegans neurons, the function of genes. The method is based on the expression, under cell specific promoters, of sense and antisense RNA corresponding to a gene of interest. By targeting the genes osm-10, osm-6 and the Green Fluorescent Protein gene, gfp, we show that this approach leads to efficient, heritable and cell autonomous knock-downs of gene function, even in neurons usually refractory to classic RNA interference (RNAi). By targeting the essential and ubiquitously expressed gene, gpb-1, which encodes a G protein beta subunit, we identify for the first time two distinct sets of neurons in which the function of gpb-1 is required to regulate two distinct behaviors: egg-laying and avoidance of repellents. The cell specific knock-downs obtained with this approach provide information that is complementary to that provided by the cell specific rescue of loss-of-function mutations and represents a useful new tool for dissecting the role that genes play in selected neurons.  相似文献   

10.
Inositol phosphoryl transferases from human pathogenic fungi   总被引:3,自引:0,他引:3  
The IPC1 gene from Saccharomyces cerevisiae, which encodes inositolphosphorylceramide (IPC) synthase, was first identified as a novel and essential gene encoding resistance to the natural product antifungal aureobasidin A (AUR1). The formation of IPC in fungi is essential for viability, suggesting inhibitors of IPC1p function would make ideal antifungal drug candidates. Homologs of the AUR1/IPC1 gene were identified from a number of human pathogenic fungi, Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis and Cryptococcus neoformans. Comparison of these genes with other homologous genes from Candida albicans, Aspergillus fumigatus, Aspergillus nidulans, Saccharomyces cerevisiae and Schizosaccharomyces pombe reveals a conserved structural motif for inositolphosphoryl transferases which is similar to a motif recently described for lipid phosphatases, but with unique characteristics.  相似文献   

11.
12.
13.
14.
15.
Aspergillus fumigatus is an important human fungal pathogen. The Aspergillus fumigatus genome contains 14 nonribosomal peptide synthetase genes, potentially responsible for generating metabolites that contribute to organismal virulence. Differential expression of the nonribosomal peptide synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed. The pattern of pes1 expression differed from that of a putative siderophore synthetase gene, sidD, and so is unlikely to be involved in iron acquisition. The Pes1 protein (expected molecular mass 698 kDa) was partially purified and identified by immunoreactivity, peptide mass fingerprinting (36% sequence coverage) and MALDI LIFT-TOF/TOF MS (four internal peptides sequenced). A pes1 disruption mutant (delta pes1) of Aspergillus fumigatus strain 293.1 was generated and confirmed by Southern and western analysis, in addition to RT-PCR. The delta pes1 mutant also showed significantly reduced virulence in the Galleria mellonella model system (P < 0.001) and increased sensitivity to oxidative stress (P = 0.002) in culture and during neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered conidial surface morphology and hydrophilicity, compared to Aspergillus fumigatus 293.1. It is concluded that pes1 contributes to improved fungal tolerance against oxidative stress, mediated by the conidial phenotype, during the infection process.  相似文献   

16.
17.
We have evaluated the usefulness of parasexual genetics in the identification of genes essential for the growth of the human fungal pathogen Aspergillus fumigatus. First, essentiality of the A. fumigatus AfFKS1 gene, encoding the catalytic subunit of the beta-(1,3)-glucan synthase complex, was assessed by inactivating one allele of AfFKS1 in a diploid strain of A. fumigatus obtained using adequate selectable markers in spore color and nitrate utilization pathways and by performing haploidization under conditions that select for the occurrence of the disrupted allele. Haploid progeny could not be obtained, demonstrating that AfFKS1 and, hence, beta-(1,3)-glucan synthesis are essential in A. fumigatus. Second, random heterozygous insertional mutants were generated by electroporation of diploid conidia with a heterologous plasmid. A total of 4.5% of the transformants failed to produce haploid progeny on selective medium. Genomic analysis of these heterozygous diploids led in particular to the identification of an essential A. fumigatus gene encoding an SMC-like protein resembling one in Schizosacccharomyces pombe involved in chromosome condensation and cohesion. However, significant plasmid and genomic DNA rearrangements were observed at many of the identified genomic loci where plasmid integration had occurred, thus suggesting that the use of electroporation to build libraries of A. fumigatus insertional mutants has relatively limited value and cannot be used in an exhaustive search of essential genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号