首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared the level of phosphotyrosyl phosphatase activity in lysates from normal human colon mucosal cells and human colon carcinoma cells and analyzed the effect of incubating these cells with sodium orthovanadate, an inhibitor of phosphotyrosyl phosphatase activity, on the relative abundance of acid-stable phosphotyrosine and on in vitro protein kinase activity of pp60c-src. Additionally, we compared the effect of lysing these cells in buffer containing only nonionic detergents with RIPA buffer, which contains both sodium dodecyl sulfate and deoxycholate, on the in vitro kinase activity of pp60c-src. Our results show that the level of detectable phosphotyrosyl phosphatase activity in lysates derived from normal colon cells and colon carcinoma cells is very similar. Additionally, the abundance of acid-stable phosphotyrosine in these cells cultured in the absence or presence of vanadate is not significantly different. However, incubation of these cells with vanadate significantly stimulates the activity of pp60c-src derived from the normal colon cells in immune-complex kinase assays, while having no detectable effect on the activity of pp60c-src from the colon tumor cells. The in vitro protein kinase activity of pp60c-src derived from RIPA buffer lysates of colon carcinoma cells was found to be elevated five- to sevenfold when compared with pp60c-src from these same cells lysed in buffer containing only Nonidet-P 40 as a detergent. The type of lysis buffer did not effect the activity of pp60c-src from normal colon mucosal cells. These results provide additional evidence that the activity of pp60c-src may be regulated differently in colon carcinoma and normal colon mucosal cells.  相似文献   

2.
We examine the interaction between polyoma-virus-encoded middle tumor antigen and the cellular src gene product, pp60c-src, using a series of monoclonal antibodies that recognize mammalian pp60c-src. Our results show that infection of mouse cells with transformation-competent strains of polyoma virus results in the stimulation of pp60c-src kinase activity severalfold over that observed in uninfected mouse cells and mouse cells infected with transformation-deficient polyoma virus. A similar degree of enhancement of pp60c-src kinase activity was found in polyoma-virus-transformed rodent cells. No differences were detected in the level of pp60c-src synthesis in polyoma-virus-infected and uninfected mouse cells or polyoma-virus-transformed and normal rodent cells. These studies demonstrate that polyoma-virus-encoded middle tumor antigen is associated with pp60c-src in lysates of polyoma-virus-infected and polyoma-virus-transformed cells and suggest a novel mechanism for the functional activation of a cellular proto-oncogene product, namely, that the interaction between middle tumor antigen and pp60c-src leads to a stimulation of pp60c-src tyrosyl kinase activity.  相似文献   

3.
The c-src protein isolated from neuronal cells (pp60c-src+) displays a higher level of protein kinase activity than does pp60c-src from nonneural tissues. There are two structural alterations present in the amino-terminal half of pp60c-src+ expressed in neurons which could contribute to the enhanced activity of this form of pp60c-src: (i) a hexapeptide insert located at amino acid 114 of avian pp60c-src+ and (ii) a novel site(s) of serine phosphorylation. We characterized pp60c-src+ expressed in a nonneuronal cell type to identify factors that regulate the activity of the c-src+ protein and the importance of the neuronal environment on this regulation. The c-src+ protein overexpressed in chicken embryo fibroblasts (CEFs) displayed higher kinase activity than did pp60c-src. The major sites of phosphorylation of the c-src+ protein were Ser-17 and Tyr-527. The unique site(s) of serine phosphorylation originally identified in pp60c-src+ expressed in neurons was not detected in the c-src+ protein overexpressed in CEFs. Therefore, the hexapeptide insert is sufficient to cause an elevation in the tyrosine protein kinase activity of pp60c-src+. Our data also indicate that CEFs infected with the Rous sarcoma virus (RSV)c-src+ display phenotypic changes that distinguish them from cultures producing pp60c-src and that pp60c-src+-expressing cells are better able to grow in an anchorage-independent manner. The level of total cellular tyrosine phosphorylation in RSVc-src+-infected cultures was moderately higher than the level observed in cultures infected with RSVc-src. This level was not as pronounced as that observed in cells infected with RSVv-src or oncogenic variants of RSVc-src. Thus, pp60c-src+ could be considered a partially activated c-src variant protein much like other c-src proteins that contain mutations in the amino-terminal domain.  相似文献   

4.
Chicken embryo tissues were examined for the expression of pp60c-src, the normal cellular homolog of the transforming protein of Rous sarcoma virus. Three assays, including a solid-phase radioimmunoassay, a competitive radioimmunoprecipitation assay, and an immune complex protein kinase assay, were employed. Elevated levels of pp60c-src were detected in lysates from several neural tissues, including brain, retina, and spinal ganglia. Other tissues contained 8- to 10-fold-lower levels of pp60c-src, levels comparable to those found in chicken embryo fibroblasts. Expression of pp60c-src in brain tissues was also shown to vary with the developmental stage of the embryo.  相似文献   

5.
Reconstitution of the polyoma virus middle T antigen (mT)-pp60-src complex and phosphatidylinositol 3-kinase (PtdIns 3-kinase) has been accomplished in vitro with immunopurified baculovirus-expressed mT-pp60c-src and PtdIns 3-kinase purified from rat liver. Both the 110- and 85-kDa subunits of the PtdIns 3-kinase associated with the mT-pp60c-src complex. The association of PtdIns 3-kinase with the mT-pp60c-src complex was dependent on the protein-tyrosine kinase activity of pp60c-src as a kinase-inactive mutant (pp60(295c-src)) still complexed with mT, but the mT-pp60(295c-src)) complex was unable to bind PtdIns 3-kinase. The mT-pp60c-src complex phosphorylated both subunits of PtdIns 3-kinase on tyrosine residues. The immunopurified mT-pp60c-src complex also associated with PtdIns 3-kinase activity from whole cell lysates, and this association was dependent upon the protein-tyrosine kinase activity of pp60c-src. Comparison of 35S-labeled proteins from whole cell lysates which associated with immunopurified mT-pp60c-src and mT-pp60(295c-src) revealed proteins of 110 and 85 kDa as the major peptides dependent on protein-tyrosine kinase activity for association with the complex. In addition, a synthetic phosphopeptide (13-mer) containing sequences conserved between the major tyrosine phosphorylation site of murine polyoma virus mT, hamster polyoma virus mT, and the insulin receptor substrate (IRS-1) specifically blocked the association of the 85- and 110-kDa polypeptides with the mT-pp60c-src complex. The ability to block the association was dependent on the tyrosine phosphorylation of the peptide. Association of PtdIns 3-kinase activity was blocked concurrently. This is the first demonstration that the 110-kDa subunit of PtdIns 3-kinase can associate with mT-pp60c-src. This association in vitro is a step toward understanding protein-protein interactions important in the signal transduction pathway of oncogenic proteins.  相似文献   

6.
The transforming protein of polyoma virus, middle T antigen, associates with the protein tyrosine kinase pp60c-src, and analysis of mutants of middle T suggests that this complex plays an important role in transformation by polyoma. It has recently been reported that pp60c-src from polyoma virus-transformed cells has enhanced tyrosine kinase activity in vitro. The data presented here confirm these findings and show that the enhanced kinase activity of pp60c-src is due to an increase in the Vmax of the enzyme. Sucrose density gradient analysis demonstrates that only the form of pp60c-src which is bound to middle T antigen is activated. The difference in enzyme activity between pp60c-src from normal and middle T-transformed cells is more marked when the enzyme is prepared from lysates containing the phosphotyrosine protein phosphatase inhibitor, sodium orthovanadate. pp60c-src from middle T transformed cells is unaffected, but pp60c-src from normal cells has reduced kinase activity if dephosphorylation is prevented. The kinase activity of pp60c-src thus appears to be regulated by its degree of phosphorylation at tyrosine, and data are presented which support this hypothesis. pp60c-src is the first example of a protein tyrosine kinase whose activity is inhibited by phosphorylation at tyrosine. Middle T antigen may increase the kinase activity of pp60c-src by preventing phosphorylation at this regulatory site.  相似文献   

7.
We have found that lysis of mouse embryo cells infected with the polyomavirus host range transformation-defective (hr-t) mutant NG59 under gentle conditions that avoid ionic detergents results in detectable NG59-encoded middle tumor antigen (MTAg) associated with pp60c-src. This MTAg-pp60c-src complex could be immunoprecipitated from NG59-infected cell lysates by either sera from animals bearing polyomavirus-induced tumors or by monoclonal antibodies directed against MTAg. Immune complex kinase assays revealed that, whereas the pp60c-src associated with NG59 MTAg possessed tyrosyl kinase activity, the NG59 MTAg in this complex was not phosphorylated in these in vitro reactions. These results demonstrate that the point insertion mutation found in this transformation-deficient strain of polyomavirus encodes MTAg molecules capable of associating with pp60c-src and defines a limited region within MTAg which appears to be critical for stable MTAg-pp60c-src interactions.  相似文献   

8.
Tyrosine-specific protein kinase activity of pp60c-src was examined in human Y79 retinoblastoma cells cultured in monolayers after clusters in suspension culture had been dissociated. The activity increased five- to six-fold between Days 1 and 7 in the monolayer cultures, with a concomitant increase in numbers of cellular contacts per cell. There was no effect of conditioned medium from high-density cultures in suspension on the activity of cultures with a low degree of contacts. The level of c-src protein in cell lysates was nearly constant irrespective of the degree of cellular contacts. These results suggest that the specific activity of pp60c-src is regulated by cell-cell contact.  相似文献   

9.
A kinetic analysis of the tyrosine-specific protein kinase of pp60c-src from the C1300 mouse neuroblastoma cell line Neuro-2A and pp60c-src expressed in fibroblasts was carried out to determine the nature of the increased specific activity of the neuroblastoma enzyme. In immune-complex kinase assays with ATP-Mn2+ and the tyrosine-containing peptide angiotensin I as phosphoacceptor substrate, pp60c-src from the neuroblastoma cell line was characterized by a maximum velocity (Vmax.) that was 7-15-fold greater than the Vmax. of pp60c-src from fibroblasts. The neuroblastoma enzyme exhibited Km values for ATP (16 +/- 3 microM) and angiotensin I (6.8 +/- 2.6 mM) that were similar to Km values for ATP (25 +/- 3 microM) and angiotensin I (6.5 +/- 1.7 mM) of pp60c-src from fibroblasts. pp60v-src expressed in Rous-sarcoma-virus-transformed cells exhibited an ATP Km value (25 +/- 4 microM) and an angiotensin I Km value (6.6 +/- 0.5 mM) that approximated the values determined for pp60c-src in neuroblastoma cells and fibroblasts. These results indicate that the pp60c-src kinase from neuroblastoma cells has a higher turnover number than pp60c-src kinase from fibroblasts, and that the neural form of the enzyme would be expected to exhibit increased catalytic activity at the saturating concentrations of ATP that are found intracellularly.  相似文献   

10.
The purification of pp60c-src has been hampered by the low levels of protein it represents in most cells and its tendency to undergo proteolysis during purification. The discovery that the platelet expresses unusually high levels of pp60c-src has made large-scale purification from a normal source feasible. We have developed a method for the purification of intact pp60c-src to near homogeneity from human platelets and have determined the enzymatic properties of this purified protein in vitro. Rapid, high yield purification of pp60c-src from isolated platelet membranes was achieved in a two-step protocol involving sequential chromatography on an anti-pp60c-src immunoaffinity matrix and phenyl-Sepharose. This protocol yielded 0.5 mg of pp60c-src from 30 units of platelets. Using enolase as an exogenous substrate, the specific activity of the enzyme was 25 nmol P.min-1.mg-1. The Km for MnATP2- for enolase phosphorylation (2.2 microM) was higher than for the autophosphorylation of pp60c-src (0.6 microM). Maximal enzyme activity required either Mn2+ or Mg2+, and both ATP and GTP could be utilized as the phosphate donor. Evidence is shown which indicate that the autophophorylation of pp60c-src in vitro occurs through an intramolecular mechanism and that this reaction is reversible.  相似文献   

11.
Intact pp60c-src, the cellular homologue of the transforming protein of Rous sarcoma virus, was purified from human platelets. The purified fractions also contained small amounts of a 54-kDa proteolytic degradation product of pp60c-src. We investigated some of the biochemical and kinetic properties of pp60c-src protein tyrosine kinase. Maximum kinase activity occurred at pH 6.5 and required a mixture of 2 mM Mn2+/Mg2+ as divalent cations. The enzyme most strongly phosphorylated casein, followed by enolase and alcohol dehydrogenase. The Km value for ATP was 4 microM for substrate phosphorylation and for autophosphorylation. Using casein, we determined a Vmax for substrate phosphorylation by pp60c-src in the range of 1.9-3.4 nmol.min-1.mg-1. Since the Vmax value for the purified 54-kDa fragment of pp60c-src was also included in this value, we conclude that proteolytic degradation of a 6-kDa fragment from the N-terminus of pp60c-src did not affect its kinase activity. Tryptic phosphopeptide analysis identified Tyr-416 as the major autophosphorylation site. Preincubation of purified pp60c-src with ATP increased the amount of autophosphorylation accompanied by an increase in Vmax, whereas the Km values were not altered. Our data directly demonstrate that autophosphorylation at Tyr-416 exerts, in contrast to phosphorylation at Tyr-527, a positive regulatory effect on the pp60c-src kinase activity.  相似文献   

12.
S A Courtneidge  A Heber 《Cell》1987,50(7):1031-1037
It has previously been shown that a proportion of middle T antigen molecules exist in a stable complex with pp60c-src. Here we show that there appears to be a third component to the complex, a protein of molecular mass 81 kd (p81). p81 was phosphorylated exclusively on tyrosine residues in kinase assays performed using immunoprecipitates from polyoma virus-transformed cells and antibodies to both middle T and pp60c-src, and was also detected when immunoprecipitates were made from lysates of 32P-labeled cells. p81 was bound to middle T and pp60c-src in cell lines containing transforming mutants of middle T, but not (in phosphorylated form) to all nontransforming mutants. A parallel investigation of phosphatidylinositol kinase activity in immune complexes containing these middle T mutants revealed a complete coincidence between the presence of p81 and phosphatidylinositol kinase activity. We therefore suggest that p81 is a phosphatidylinositol kinase.  相似文献   

13.
We have observed increased phosphorylation of tyrosine residues on the polyoma virus middle tumor antigen (MTAg) in in vitro kinase assays of the immune complexes immunoprecipitated from lysates of polyoma virus-infected mouse embryo cells to which increasing amounts of uninfected mouse embryo cell lysate had been added. The components from uninfected mouse cells responsible for increased MTAg phosphorylation were localized by subcellular fractionation to the plasma membrane and found to be sensitive to protease digestion, N-ethylmaleimide, and 5'-p-fluorosulfonylbenzoyladenosine inactivation. The majority of the membrane-associated activity responsible for the increased MTAg phosphorylation in these assays could be cleared from lysates of uninfected mouse cell lysates by centrifugation after reaction with Sepharose-bound monoclonal antibodies which recognize pp60c-src. These results suggest that MTAg can associate with cellular tyrosyl kinases in vitro and be phosphorylated by these enzymes in immune-complex kinase assays. The identity of at least one of these cellular tryosyl kinases which can associate with MTAg in vitro is likely to be pp60c-src.  相似文献   

14.
pp60c-src kinase activity in bovine coronary extracts is stimulated by ATP   总被引:1,自引:0,他引:1  
pp60c-src kinase is believed to participate in regulating key cellular mechanisms including signal transduction and differentiation of smooth muscle during early embryogenesis. In this study, pp60c-src kinase activity was demonstrated in extracts from adult bovine coronary arterial smooth muscle. Activity, reflected by autophosphorylation of pp60c-src, phosphorylation of exogenous substrates, and phosphorylation of several endogenous substrates, was enhanced about 2 fold when added Mg2+ was replaced by Mn2+. Unexpectedly, activity was dramatically stimulated 20-50 fold by prior incubation with ATP. Such stimulation appears to be mediated through a novel mechanism which is independent of ATP-induced phosphorylation of reaction components. These new observations strongly suggest that a unique mechanism exists for regulation of coronary arterial pp60c-src kinase activity. Conceivably, this mechanism may serve important roles in modulating signal transduction and contractility of vascular smooth muscle.  相似文献   

15.
The tyrosine protein kinase activities of pp60c-src and pp60v-src were compared. The activities were qualitatively similar in vitro when the src proteins were bound in an immune complex with monoclonal antibody; both proteins utilized either ATP or GTP as phosphate donors, preferred Mn2+ to Mg2+, and had similar exogenous substrate specificities. The specific activity of pp60c-src was about 10-fold lower than that of pp60v-src for exogenous substrate phosphorylation but was only 1.1- to 2-fold lower than that of pp60v-src for autophosphorylation. Six glycolytic enzymes, including three not previously identified as substrates for pp60src phosphorylation, were phosphorylated by both pp60c-src and pp60v-src. Levels of pp60c-src fourfold higher than the amount of pp60v-src in src-plasmid-transformed cells did not detectably alter the level of phosphotyrosine in cellular proteins, but increasing the expression of pp60c-src another twofold (which induces cells to form foci in monolayer culture (P.J. Johnson, P.M. Coussens, A.V. Danko, and D. Shalloway, Mol. Cell. Biol. 5:1073-1083, 1985) resulted in a threefold increase in the level of cellular protein phosphotyrosine. Immunoprecipitation and analysis of the alkali-stable phosphoproteins by two-dimensional electrophoresis showed that, in contrast to pp60v-src-transformed cells, pp36 and enolase are only weakly phosphorylated in these high-level pp60c-src overexpresser cells. Even allowing for the in vitro differences in specific activities of phosphorylation, these results suggest that the pp60c-src tyrosine protein phosphorylating activity may be restricted relative to that of pp60v-src by additional in vivo mechanisms.  相似文献   

16.
We characterized the tyrosine phosphorylation sites of free pp60c-src and of pp60c-src associated with the polyomavirus middle tumor antigen (mT) in transformed avian and rodent cells. The sites of tyrosine phosphorylation in the two populations of pp60c-src were different, both in vitro and in vivo. Free pp60c-src was phosphorylated in vitro at a single site, tyrosine 416. pp60c-src associated with mT was phosphorylated in vitro on tyrosine 416 and on one or more additional tyrosine residues located in the amino-terminal region of the molecule. Free pp60c-src in polyomavirus mT-transformed cells was phosphorylated in vivo on tyrosine 527. In contrast, pp60c-src associated with mT was phosphorylated in vivo on tyrosine 416 and not detectably on tyrosine 527. Thus, the in vivo phosphorylation sites of pp60c-src associated with mT in transformed cells are identical to those of pp60v-src, the Rous sarcoma virus transforming protein. The results suggest that altered phosphorylation of pp60c-src associated with mT may play a role in the enhancement of the pp60c-src protein kinase activity and in cell transformation by polyomavirus.  相似文献   

17.
Two forms of the c-src protein-tyrosine kinase, pp60c-src, are detectable in the central nervous system. One form pp60+, appears to be exclusively expressed in neurons and is characterized by insertion of 6 amino acids compared to its non-neuronal counterpart, pp60. These 2 proteins were studied in the mutant mouse strains weaver and staggerer with postnatal loss of cerebellar granular neurons. We found a continuous postnatal decline of the neuronal form of pp60c-src, pp60+, in the cerebellum of both mutants concomitant with the degeneration of cerebellar granule cells. This indicates that granular neurons provide the main source for pp60+ in the cerebellar cortex.  相似文献   

18.
A protein tyrosine kinase involved in regulation of pp60c-src function   总被引:22,自引:0,他引:22  
We recently identified a novel protein tyrosine kinase that specifically phosphorylates truncated pp60c-src (Mr = 53,000) at a tyrosine residue(s) distinct from its autophosphorylation site. In this study, we examined whether this enzyme phosphorylates intact pp60c-src (Mr = 60,000) and determined its phosphorylation site. Non-neuronal and neuronal forms of intact pp60c-src were separately purified from the membrane fraction of neonatal rat brain by sequential column chromatographies. The novel kinase phosphorylated tyrosine residues of both forms of intact pp60c-src. The phosphorylation occurred in parallel with autophosphorylation of pp60c-src, and in both forms the final stoichiometry estimated was quite similar to that of autophosphorylation (about 5%). The enzyme also phosphorylated pp60c-src in which the kinase activity had been destroyed by an ATP analogue, p-fluorosulfonylbenzoyl 5'-adenosine. The phosphorylation site of the non-neuronal form was analyzed by sequential peptide mapping with tosylphenylalanyl chloromethyl ketone-treated trypsin and alpha-chymotrypsin. Tryptic digestion of the phosphorylated pp60c-src yielded a unique phosphopeptide that cross-reacted with an antibody specific for the carboxyl-terminal sequence of chicken pp60c-src. Digestion of the phosphopeptide with chymotrypsin yielded a product that comigrated with a synthetic phosphopeptide corresponding to the carboxyl-terminal 15 residues of chicken pp60c-src. These results clearly indicate that the carboxyl-terminal sequence of rat pp60c-src is identical to that of chicken pp60c-src, and a tyrosine residue corresponding to chicken Tyr527 is the phosphorylation site. This phosphorylation resulted in a decrease in the enolase phosphorylating activity of pp60c-src. Kinetic experiments indicated that this decrease in activity was due to a decrease in the Vmax value of pp60c-src. These findings support our previous proposal that the novel tyrosine kinase acts as a specific regulator of pp60c-src in cells.  相似文献   

19.
Thrombin stimulation of platelets induces a transient increase in the specific activity of pp60c-src followed by a redistribution of pp60c-src to the Triton X-100-insoluble, cytoskeleton-rich fraction. Concomitant with the observed increase in pp60c-src activity was a rapid dephosphorylation of tyrosine 527 in 10 to 15% of pp60c-src molecules. In addition, we found that pp60c-src from the Triton-insoluble fraction was phosphorylated on tyrosine 416, the autophosphorylation site which is phosphorylated in activated oncogenic variants of pp60src. Furthermore, in platelets from patients with Glanzmann's thrombasthenia (which are deficient in the integrin receptor GPIIb-IIIa), pp60c-src was not translocated to the Triton-insoluble fraction, and there was a sustained increase in pp60c-src activity following thrombin treatment. These results suggest that pp60c-src is rapidly activated in thrombin-stimulated platelets, potentially by a protein tyrosine phosphatase, before it translocates to a cytoskeletal fraction, where many of its potential substrates are found. The evidence that the cytoskeletal association of pp60c-src is dependent upon engagement of the integrin receptor GPIIb-IIIa suggests that integrin-cytoskeletal complexes may serve to compartmentalize and anchor activated enzymes involved in signal transduction.  相似文献   

20.
Collagen stimulation of platelets induced an increase in the specific activity of pp60c-src immunoprecipitated from the Triton-soluble fraction. The earliest time after collagen stimulation that an increase in pp60c-src activity was observed was 30 s. However, the maximum activity of pp60c-src in the Triton-soluble fraction was observed 60 s after collagen stimulation. At this time an approximately twofold increase of pp60c-src activity towards phosphorylation of KVEKIGEGTYGVVKK specific peptide and enolase and a 4.5-fold increase towards phosphorylation of pp60c-src itself was measured. Furthermore, the majority of pp60c-src as well as pp54/58lyn, pp60fyn, and pp72syk were found in the Triton-soluble fraction in resting platelets. Collagen induced, to different extents and velocities, translocation of all of these proteins from the Triton-soluble fraction to the Triton-insoluble, cytoskeleton-rich, platelets fraction. These results provide direct evidence that collagen stimulation of platelets increases the tyrosine kinase activity of pp60c-src and suggest that the platelet cytoskeleton plays an important role in collagen-induced signal transduction by localizing signaling molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号